コード例 #1
0
ファイル: unit_tests.py プロジェクト: LukasBabbel/time_series
    def test_ma_fit_durbin_levinson(self):
        np.random.seed(12345)
        simulated_ma1 = simulate_arma(theta=[0], sigma=0.5, simulations=10000)
        ma1 = ARMA(simulated_ma1)

        ma1.fit_ma(q=1, method="durbin_levinson")
        self.assertAlmostEqual(ma1.model.get_theta(1), 0, 1)
        self.assertAlmostEqual(ma1.model.get_sigma_sq(), 0.25, 1)
コード例 #2
0
ファイル: unit_tests.py プロジェクト: LukasBabbel/time_series
    def test_likelihood_kalman(self):
        ma_model = PureARMA(theta=[0.5])
        ma_data = [0, 1]
        ma_ts = ARMA(ma_data, subtract_mean=False)

        likelihood = (2 * np.pi) ** -1 * np.exp(-0.5)

        self.assertAlmostEqual(ma_ts.get_likelihood(model=ma_model, method="kalman"), likelihood)
コード例 #3
0
ファイル: unit_tests.py プロジェクト: LukasBabbel/time_series
    def test_turning_point_test(self):
        data = np.array([1, 0.5, 0, 1, 0.4, 0.2, 3])
        seq = ARMA(data)
        model = PureARMA()

        turning_test_result = abs(10 / 3 - 3) / ((16 * 7 - 29) / 90)

        self.assertEqual(seq.turning_point_test(model=model), turning_test_result)
        self.assertEqual(seq.turning_point_test(residuals=data), turning_test_result)
コード例 #4
0
ファイル: unit_tests.py プロジェクト: LukasBabbel/time_series
    def test_difference_sign_test(self):
        data = np.array([1, 0.5, 0, 1, 0.4, 0.2, 3])
        seq = ARMA(data)
        model = PureARMA()

        diff_sign_result = 1 / (8 / 12)

        self.assertEqual(seq.difference_sign_test(model=model), diff_sign_result)
        self.assertEqual(seq.difference_sign_test(residuals=data), diff_sign_result)
コード例 #5
0
ファイル: unit_tests.py プロジェクト: LukasBabbel/time_series
    def test_ar_fit_durbin_levinson(self):
        np.random.seed(12345)
        simulated_ar3 = simulate_arma(phi=[0.5, 0.1, 0.2], sigma=0.5)
        ar3 = ARMA(simulated_ar3)

        ar3.fit_ar(p=3, method="durbin_levinson")
        self.assertAlmostEqual(ar3.model.get_phi(1), 0.5, 1)
        self.assertAlmostEqual(ar3.model.get_phi(2), 0.1, 1)
        self.assertAlmostEqual(ar3.model.get_phi(3), 0.2, 1)
        self.assertAlmostEqual(ar3.model.get_sigma_sq(), 0.25, 1)
コード例 #6
0
ファイル: unit_tests.py プロジェクト: LukasBabbel/time_series
    def test_one_step_kalman(self):
        ma_model = PureARMA(theta=[0.5], sigma_sq=2)
        ma_data = [1, 1.5, 0.5, -2]
        ma = ARMA(ma_data, subtract_mean=False)

        zeros = np.zeros(20)
        arma_model = PureARMA(phi=[0.2, -0.6, 0.3], theta=[0.3, -0.4], sigma_sq=0.25)
        arma = ARMA(zeros)

        ar_data = [1, 2, 4]
        ar_model = PureARMA(phi=[0.5, -0.5], sigma_sq=2)
        ar = ARMA(ar_data, subtract_mean=False)

        for k in range(21):
            self.assertEqual(arma.get_one_step_predictor(k, arma_model, method="kalman"), 0)

        self.assertAlmostEqual(ma.get_one_step_predictor(0, ma_model, method="kalman"), 0)
        self.assertAlmostEqual(ma.get_one_step_predictor(1, ma_model, method="kalman"), 0.5)
        self.assertAlmostEqual(ma.get_one_step_predictor(2, ma_model, method="kalman"), 0.5)
        self.assertAlmostEqual(ma.get_one_step_predictor(3, ma_model, method="kalman"), 0)
        self.assertAlmostEqual(ma.get_one_step_predictor(4, ma_model, method="kalman"), -1)

        self.assertAlmostEqual(ar.get_one_step_predictor(0, ar_model, method="kalman"), 0)
        self.assertAlmostEqual(ar.get_one_step_predictor(1, ar_model, method="kalman"), 0.5)
        self.assertAlmostEqual(ar.get_one_step_predictor(2, ar_model, method="kalman"), 0.5)
        self.assertAlmostEqual(ar.get_one_step_predictor(3, ar_model, method="kalman"), 1)
コード例 #7
0
ファイル: unit_tests.py プロジェクト: LukasBabbel/time_series
    def test_weighted_sum_squared_residuals(self):
        data = [-2, 0, 2]
        arma = ARMA(data)
        model = PureARMA()
        ma_model = PureARMA(theta=[-0.9], sigma_sq=2)
        ma_data = [-2.58, 1.62, -0.96, 2.62, -1.36]
        ma = ARMA(ma_data, subtract_mean=False)

        self.assertAlmostEqual(arma.get_weighted_sum_squared_residuals(model), 8)

        self.assertAlmostEqual(ma.get_weighted_sum_squared_residuals(ma_model), 8.02, 1)
コード例 #8
0
ファイル: unit_tests.py プロジェクト: LukasBabbel/time_series
    def test_aicc_methods(self):
        np.random.seed(12345)
        simulated_arma = simulate_arma(phi=[0.2, 0.5], theta=[0.2], simulations=50)
        arma = ARMA(simulated_arma)
        arma_model = PureARMA(phi=[0.2, 0.5], theta=[0.2], sigma_sq=0.25)

        aicc_kalman = arma.get_aicc(model=arma_model, method="kalman")
        aicc_innovations = arma.get_aicc(model=arma_model, method="innovations_algo")

        # test <0.5% difference between methods
        self.assertTrue(abs(aicc_innovations - aicc_kalman) / aicc_innovations < 0.005)
コード例 #9
0
ファイル: unit_tests.py プロジェクト: LukasBabbel/time_series
    def test_loglikelihood(self):
        model_arma11 = PureARMA([0.2], [0.4], sigma_sq=1)
        zeros = np.zeros(6)
        non_zeros = [0, 0, 0, 0, 0, 1]
        zero_ts = ARMA(zeros)
        non_zero_ts = ARMA(non_zeros, subtract_mean=False)

        loglikelihood_zeros = np.log((2 * np.pi) ** -3 * (1.375 * 1.0436 * 1.0067 * 1.0011 * 1.0002) ** -0.5)
        loglikelihood_non_zeros = np.log(np.exp(-0.5 * (1 / 1.0002))) + loglikelihood_zeros

        self.assertAlmostEqual(zero_ts.get_loglikelihood(model_arma11), loglikelihood_zeros, 4)
        self.assertAlmostEqual(non_zero_ts.get_loglikelihood(model_arma11), loglikelihood_non_zeros, 3)
コード例 #10
0
ファイル: unit_tests.py プロジェクト: LukasBabbel/time_series
    def test_aic_innovation(self):
        model_arma11 = PureARMA([0.2], [0.4], sigma_sq=1)
        zeros = np.zeros(6)
        non_zeros = [0, 0, 0, 0, 0, 1]
        zero_ts = ARMA(zeros)
        non_zero_ts = ARMA(non_zeros, subtract_mean=False)

        loglikelihood_zeros = np.log((2 * np.pi) ** -3 * (1.375 * 1.0436 * 1.0067 * 1.0011 * 1.0002) ** -0.5)
        loglikelihood_non_zeros = np.log(np.exp(-0.5 * (1 / 1.0002))) + loglikelihood_zeros

        aicc_zeros = -2 * loglikelihood_zeros + 6
        aicc_nonzeros = -2 * loglikelihood_non_zeros + 6

        self.assertAlmostEqual(zero_ts.get_aic(model_arma11, method="innovations_algo"), aicc_zeros, 4)
        self.assertAlmostEqual(non_zero_ts.get_aic(model_arma11, method="innovations_algo"), aicc_nonzeros, 3)
コード例 #11
0
ファイル: unit_tests.py プロジェクト: LukasBabbel/time_series
    def test_transform_mean(self):
        data = [-1, 0.5, 0, -0.5, 1]
        empty = []
        mean_zero = ARMA([1, -1])
        pos_mean = ARMA([2])
        neg_fraction_mean = ARMA([-0.5])

        self.assertListEqual(mean_zero._transform(data).tolist(), data)
        self.assertListEqual(pos_mean._transform(data).tolist(), [-3, -1.5, -2, -2.5, -1])
        self.assertListEqual(neg_fraction_mean._transform(data).tolist(), [-0.5, 1, 0.5, 0, 1.5])

        self.assertListEqual(mean_zero._transform(empty).tolist(), empty)
        self.assertListEqual(pos_mean._transform(empty).tolist(), empty)
        self.assertListEqual(neg_fraction_mean._transform(empty).tolist(), empty)
コード例 #12
0
ファイル: unit_tests.py プロジェクト: LukasBabbel/time_series
    def test_FPE(self):
        short_data = np.zeros(10)
        long_data = np.ones(100000)
        low_var_model = PureARMA(phi=[0.3, 0.2], sigma_sq=0.1)
        high_var_model = PureARMA(phi=[0.1, 0.4, -0.4], sigma_sq=5)
        noise_model = PureARMA(sigma_sq=2)
        short_ts = ARMA(short_data)
        long_ts = ARMA(long_data)
        short_ts.model = low_var_model
        long_ts.model = low_var_model

        self.assertAlmostEqual(short_ts.get_fpe(), 0.1 * 12 / 8)
        self.assertAlmostEqual(short_ts.get_fpe(model=high_var_model), 5 * 13 / 7)
        self.assertAlmostEqual(short_ts.get_fpe(model=noise_model), 2)

        self.assertAlmostEqual(long_ts.get_fpe(), 0.1 * 100002 / 99998)
        self.assertAlmostEqual(long_ts.get_fpe(model=high_var_model), 5 * 100003 / 99997)
        self.assertAlmostEqual(long_ts.get_fpe(model=noise_model), 2)
コード例 #13
0
ファイル: unit_tests.py プロジェクト: LukasBabbel/time_series
    def test_likelihood_inno(self):
        ma_model = PureARMA(theta=[-0.9], sigma_sq=1)
        ma_data = [-2.58, 1.62, -0.96, 2.62, -1.36]
        ma = ARMA(ma_data, subtract_mean=False)

        model_arma11 = PureARMA([0.2], [0.4], sigma_sq=1)
        zeros = np.zeros(6)
        non_zeros = [0, 0, 0, 0, 0, 1]
        zero_ts = ARMA(zeros)
        non_zero_ts = ARMA(non_zeros, subtract_mean=False)

        likelihood_zeros = (2 * np.pi) ** -3 * (1.375 * 1.0436 * 1.0067 * 1.0011 * 1.0002) ** -0.5
        likelihood_non_zeros = likelihood_zeros * np.exp(-0.5 * (1 / 1.0002))

        # self.assertAlmostEqual(ma.get_likelihood(ma_model), 0.0035943790355147075, 4)
        self.assertAlmostEqual(zero_ts.get_likelihood(model_arma11, method="innovations_algo"), likelihood_zeros)
        self.assertAlmostEqual(
            non_zero_ts.get_likelihood(model_arma11, method="innovations_algo"), likelihood_non_zeros, 6
        )
コード例 #14
0
ファイル: unit_tests.py プロジェクト: LukasBabbel/time_series
    def test_sample_covariance_matrix(self):
        integers = [1, 2, 3, 4, 5]
        integer_ts = ARMA(integers)
        cov_mat_1 = np.matrix([2])
        cov_mat_2 = np.matrix([[2, 0.8], [0.8, 2]])
        cov_mat_3 = np.matrix([[2, 0.8, -0.2], [0.8, 2, 0.8], [-0.2, 0.8, 2]])
        cov_mat_4 = np.matrix([[2, 0.8, -0.2, -0.8], [0.8, 2, 0.8, -0.2], [-0.2, 0.8, 2, 0.8], [-0.8, -0.2, 0.8, 2]])
        cov_mat_5 = np.matrix(
            [
                [2, 0.8, -0.2, -0.8, -0.8],
                [0.8, 2, 0.8, -0.2, -0.8],
                [-0.2, 0.8, 2, 0.8, -0.2],
                [-0.8, -0.2, 0.8, 2, 0.8],
                [-0.8, -0.8, -0.2, 0.8, 2],
            ]
        )

        np.testing.assert_almost_equal(integer_ts.sample_covariance_matrix(1), cov_mat_1)
        np.testing.assert_almost_equal(integer_ts.sample_covariance_matrix(2), cov_mat_2)
        np.testing.assert_almost_equal(integer_ts.sample_covariance_matrix(3), cov_mat_3)
        np.testing.assert_almost_equal(integer_ts.sample_covariance_matrix(4), cov_mat_4)
        np.testing.assert_almost_equal(integer_ts.sample_covariance_matrix(5), cov_mat_5)
コード例 #15
0
ファイル: unit_tests.py プロジェクト: LukasBabbel/time_series
    def test_sample_acf(self):
        integers = [1, 2, 3, 4, 5]
        integer_ts = ARMA(integers)

        self.assertAlmostEqual(integer_ts.sample_acf(0), 1, 10)
        self.assertAlmostEqual(integer_ts.sample_acf(-1), 0.4, 10)
        self.assertAlmostEqual(integer_ts.sample_acf(2), -0.1, 10)
        self.assertAlmostEqual(integer_ts.sample_acf(-3), -0.4, 10)
        self.assertAlmostEqual(integer_ts.sample_acf(4), -0.4, 10)
コード例 #16
0
 def ran_a_test():
     a = ARMA([-0.5, 0.11], [], 0.5, "uni")
     time_series = [a.generater.next() for i in range(2000)]
     p = ArPredicter(len(a.alphas), max_x = max(time_series),)
     errors = []
     for index, x in enumerate(time_series):
         if index < p.min_ob:
             p.predict_and_fit(x)
         elif random.random() > missing_percent:
             rec_x = p.predict_and_fit(x)
             errors.append(rec_x - x)
         else:
             p.predict_and_fit('*')
     mse = sum(map(lambda x: x**2, errors)) / len(errors)
     result['errors'].append(errors)
     result['mses'].append(mse)
コード例 #17
0
 def run_a_test():
     #a = ARMA([0.3, -0.4, 0.4, -0.5, 0.6], [], 0.3, noise_type)
     a = ARMA([-0.5, 0.11], [], 0.5, noise_type)
     time_series = [a.generater.next() for i in range(2000)]
     if_missing = [
         1 if random.random() > missing_rate or time_series.index(t) < 6
         else 0 for t in time_series
     ]
     time_series = [
         t if flag == 1 else 0 for t, flag in zip(time_series, if_missing)
     ]
     missing_indexs = [
         index for index, flag in enumerate(if_missing) if flag == 0
     ]
     p = ArPredicter(a.p, time_series, missing_indexs)
     result['errors'].append(p.errors)
     result['mses'].append(p.mse)
コード例 #18
0
ファイル: run_arma.py プロジェクト: zonghua94/euler
def main(_):
    flags_obj = tf.flags.FLAGS
    euler_graph = tf_euler.dataset.get_dataset(flags_obj.dataset)
    euler_graph.load_graph()

    dims = [flags_obj.hidden_dim, flags_obj.hidden_dim]
    if flags_obj.run_mode == 'train':
        metapath = [euler_graph.train_edge_type]
    else:
        metapath = [euler_graph.all_edge_type]
    num_steps = int((euler_graph.total_size + 1) // flags_obj.batch_size *
                    flags_obj.num_epochs)

    model = ARMA(dims,
                 metapath,
                 euler_graph.feature_idx,
                 euler_graph.feature_dim,
                 euler_graph.label_idx,
                 euler_graph.label_dim,
                 num_layers=flags_obj.layers,
                 K=flags_obj.K)
    params = {
        'train_node_type': euler_graph.train_node_type[0],
        'batch_size': flags_obj.batch_size,
        'optimizer': flags_obj.optimizer,
        'learning_rate': flags_obj.learning_rate,
        'log_steps': flags_obj.log_steps,
        'model_dir': flags_obj.model_dir,
        'id_file': euler_graph.id_file,
        'infer_dir': flags_obj.model_dir,
        'total_size': euler_graph.total_size,
        'total_step': num_steps
    }
    config = tf.estimator.RunConfig(log_step_count_steps=None)
    model_estimator = NodeEstimator(model, params, config)

    if flags_obj.run_mode == 'train':
        model_estimator.train()
    elif flags_obj.run_mode == 'evaluate':
        model_estimator.evaluate()
    elif flags_obj.run_mode == 'infer':
        model_estimator.infer()
    else:
        raise ValueError('Run mode not exist!')
コード例 #19
0
ファイル: unit_tests.py プロジェクト: LukasBabbel/time_series
    def test_difference_sign(self):
        const = np.ones(10)
        decreasing = np.array([2, 1, 0.5, 0, -0.2])
        increasing = np.array([-2, -1, 0, 0.1, 0.2, 0.4])
        seq = np.array([1, 0.5, 0, 1, 0.4, 0.2, 3])
        short = np.array([0, 1, 0])
        very_short = np.array([0, 1])
        singleton = np.array([0])
        empty = np.array([])

        arma = ARMA([0])

        self.assertEqual(arma._differene_sign(const), 0)
        self.assertEqual(arma._differene_sign(decreasing), 0)
        self.assertEqual(arma._differene_sign(increasing), 5)
        self.assertEqual(arma._differene_sign(seq), 2)
        self.assertEqual(arma._differene_sign(short), 1)
        self.assertEqual(arma._differene_sign(very_short), 1)
        self.assertEqual(arma._differene_sign(singleton), 0)
        self.assertEqual(arma._differene_sign(empty), 0)
コード例 #20
0
ファイル: unit_tests.py プロジェクト: LukasBabbel/time_series
    def test_turning_pts(self):
        const = np.ones(10)
        decreasing = np.array([2, 1, 0.5, 0, -0.2])
        increasing = np.array([-2, -1, 0, 0.1, 0.2, 0.4])
        seq = np.array([1, 0.5, 0, 1, 0.4, 0.2, 3])
        short = np.array([0, 1, 0])
        very_short = np.array([0, 1])
        singleton = np.array([0])
        empty = np.array([])

        arma = ARMA([0])

        self.assertEqual(arma._turning_points(const), 0)
        self.assertEqual(arma._turning_points(decreasing), 0)
        self.assertEqual(arma._turning_points(increasing), 0)
        self.assertEqual(arma._turning_points(seq), 3)
        self.assertEqual(arma._turning_points(short), 1)
        self.assertEqual(arma._turning_points(very_short), 0)
        self.assertEqual(arma._turning_points(singleton), 0)
        self.assertEqual(arma._turning_points(empty), 0)
コード例 #21
0
ファイル: unit_tests.py プロジェクト: LukasBabbel/time_series
    def test_ar_fit_yule_walker(self):
        zeros = np.zeros(100)
        zero_ts = ARMA(zeros)

        np.random.seed(12345)
        simulated_ar3 = simulate_arma(phi=[0.5, 0.1, 0.2], sigma=0.5)
        ar3 = ARMA(simulated_ar3)

        zero_ts.fit_ar(p=0, method="yule_walker")
        self.assertEqual(len(zero_ts.model.get_params()[0]), 0)

        ar3.fit_ar(p=3, method="yule_walker")
        self.assertAlmostEqual(ar3.model.get_params()[0][0], 0.5, 1)
        self.assertAlmostEqual(ar3.model.get_params()[0][1], 0.1, 1)
        self.assertAlmostEqual(ar3.model.get_params()[0][2], 0.2, 1)
コード例 #22
0
ファイル: unit_tests.py プロジェクト: LukasBabbel/time_series
    def test_sample_autocovariance(self):
        zeros = np.zeros(100)
        zero_ts = ARMA(zeros, subtract_mean=True)

        ones = np.ones(10)
        ones_ts_mean_corrected = ARMA(ones, subtract_mean=True)
        ones_ts_mean_uncorrected = ARMA(ones, subtract_mean=False)

        integers = [1, 2, 3, 4, 5]
        integer_ts = ARMA(integers)

        for k in range(100):
            self.assertEqual(zero_ts.sample_autocovariance(k), 0)

        for k in range(10):
            self.assertEqual(ones_ts_mean_corrected.sample_autocovariance(k), 0)
            self.assertEqual(ones_ts_mean_corrected.sample_autocovariance(-k), 0)

        for k in range(10):
            self.assertEqual(ones_ts_mean_uncorrected.sample_autocovariance(-k), 0)
            self.assertEqual(ones_ts_mean_uncorrected.sample_autocovariance(k), 0)

        self.assertAlmostEqual(integer_ts.sample_autocovariance(0), 2, 10)
        self.assertAlmostEqual(integer_ts.sample_autocovariance(1), 0.8, 10)
        self.assertAlmostEqual(integer_ts.sample_autocovariance(2), -0.2, 10)
        self.assertAlmostEqual(integer_ts.sample_autocovariance(3), -0.8, 10)
        self.assertAlmostEqual(integer_ts.sample_autocovariance(4), -0.8, 10)
コード例 #23
0
ファイル: unit_tests.py プロジェクト: LukasBabbel/time_series
    def test_sample_pacf(self):
        integers = [1, 2, 3, 4, 5]
        integer_ts = ARMA(integers)

        self.assertAlmostEqual(integer_ts.sample_pacf(1), 0.4)
        self.assertAlmostEqual(integer_ts.sample_pacf(2), -13 / 42)
コード例 #24
0
ファイル: unit_tests.py プロジェクト: LukasBabbel/time_series
    def test_one_step_predictions(self):
        ma_model = PureARMA(theta=[-0.9], sigma_sq=1)
        ma_data = [-2.58, 1.62, -0.96, 2.62, -1.36]
        ma = ARMA(ma_data, subtract_mean=False)

        self.assertEqual(ma.get_one_step_predictor(0, ma_model), 0)
        self.assertAlmostEqual(ma.get_one_step_predictor(1, ma_model, method="innovations_algo"), 1.28, 2)
        self.assertAlmostEqual(ma.get_one_step_predictor(2, ma_model, method="innovations_algo"), -0.22, 2)
        self.assertAlmostEqual(ma.get_one_step_predictor(3, ma_model, method="innovations_algo"), 0.55, 2)
        self.assertAlmostEqual(ma.get_one_step_predictor(4, ma_model, method="innovations_algo"), -1.63, 2)
        self.assertAlmostEqual(ma.get_one_step_predictor(5, ma_model, method="innovations_algo"), -0.22, 2)

        arma_data = [-1.1, 0.514, 0.116, -0.845, 0.872, -0.467, -0.977, -1.699, -1.228, -1.093]
        arma_model = PureARMA(phi=[0.2], theta=[0.4], sigma_sq=1)
        arma = ARMA(arma_data, subtract_mean=False)

        self.assertEqual(arma.get_one_step_predictor(0, arma_model, method="innovations_algo"), 0)
        self.assertAlmostEqual(arma.get_one_step_predictor(1, arma_model, method="innovations_algo"), -0.534, 1)
        self.assertAlmostEqual(arma.get_one_step_predictor(2, arma_model, method="innovations_algo"), 0.5068, 1)
        self.assertAlmostEqual(arma.get_one_step_predictor(3, arma_model, method="innovations_algo"), -0.1321, 1)
        self.assertAlmostEqual(arma.get_one_step_predictor(4, arma_model, method="innovations_algo"), -0.4539, 1)
        self.assertAlmostEqual(arma.get_one_step_predictor(5, arma_model, method="innovations_algo"), 0.7046, 1)

        data = [1, 2, 3, 4, 5]
        empty_model = PureARMA()
        empty = ARMA(data)
        empty.model = empty_model

        for k in range(6):
            self.assertEqual(empty.get_one_step_predictor(k, method="innovations_algo"), 0)
コード例 #25
0
ファイル: unit_tests.py プロジェクト: LukasBabbel/time_series
 def test_no_fitting_exceptions(self):
     np.random.seed(12345)
     simulated_arma = simulate_arma(phi=[0.2, 0.5], theta=[0.2], simulations=10)
     arma = ARMA(simulated_arma)
     for method in arma._implemented_arma_methods:
         arma.fit_arma(p=2, q=1, method=method)
コード例 #26
0
ファイル: unit_tests.py プロジェクト: LukasBabbel/time_series
    def test_reduced_likelihood(self):
        ma_model = PureARMA(theta=[-0.9], sigma_sq=0.5)
        ma_data = [-2.58, 1.62, -0.96, 2.62, -1.36]
        ma = ARMA(ma_data, subtract_mean=False)

        self.assertAlmostEqual(ma.get_reduced_likelihood(ma_model), 0.7387, 2)