def run(argv=None): if argv is None: argv = sys.argv[1:] elif isinstance(argv, str): argv = argv.split() parser = build_parser() opt, args = parser.parse_args(argv) if len(args) != 1: parser.error("incorrect number of arguments") name = args[0] if world.rank == 0: out = sys.stdout#open('%s-%s.results' % (name, opt.identifier), 'w') else: out = devnull a = None try: symbols = string2symbols(name) except ValueError: # name was not a chemical formula - must be a file name: atoms = read(name) else: if opt.crystal_structure: a = opt.lattice_constant if a is None: a = estimate_lattice_constant(name, opt.crystal_structure, opt.c_over_a) out.write('Using an estimated lattice constant of %.3f Ang\n' % a) atoms = bulk(name, opt.crystal_structure, a, covera=opt.c_over_a, orthorhombic=opt.orthorhombic, cubic=opt.cubic) else: try: # Molecule? atoms = molecule(name) except NotImplementedError: if len(symbols) == 1: # Atom atoms = Atoms(name) elif len(symbols) == 2: # Dimer atoms = Atoms(name, positions=[(0, 0, 0), (opt.bond_length, 0, 0)]) else: raise ValueError('Unknown molecule: ' + name) if opt.magnetic_moment: magmom = opt.magnetic_moment.split(',') atoms.set_initial_magnetic_moments(np.tile(magmom, len(atoms) // len(magmom))) if opt.repeat is not None: r = opt.repeat.split(',') if len(r) == 1: r = 3 * r atoms = atoms.repeat([int(c) for c in r]) if opt.gui: view(atoms) return if opt.write_to_file: write(opt.write_to_file, atoms) return if opt.effective_medium_theory: Runner = EMTRunner else: Runner = GPAWRunner if opt.fit: strains = np.linspace(0.98, 1.02, 5) else: strains = None if opt.constrain_tags: tags = [int(t) for t in opt.constrain_tags.split(',')] constrain = FixAtoms(mask=[t in tags for t in atoms.get_tags()]) atoms.constraints = [constrain] runner = Runner(name, atoms, strains, tag=opt.identifier, clean=not opt.read, fmax=opt.relax, out=out) if not opt.effective_medium_theory: # Import stuff that eval() may need to know: from gpaw.wavefunctions.pw import PW from gpaw.occupations import FermiDirac, MethfesselPaxton if opt.parameters: input_parameters = eval(open(opt.parameters).read()) else: input_parameters = {} for key in defaults: value = getattr(opt, key) if value is not None: try: input_parameters[key] = eval(value) except (NameError, SyntaxError): input_parameters[key] = value runner.set_parameters(vacuum=opt.vacuum, write_gpw_file=opt.write_gpw_file, **input_parameters) runner.run() runner.summary(plot=opt.plot, a0=a) return runner
def build(): p = OptionParser(usage='%prog [options] [ads@]surf [output file]', version='%prog 0.1', description='Example ads/surf: fcc-CO@2x2Ru0001') p.add_option('-l', '--layers', type='int', default=4, help='Number of layers.') p.add_option('-v', '--vacuum', type='float', default=5.0, help='Vacuum.') p.add_option('-x', '--crystal-structure', help='Crystal structure.', choices=['sc', 'fcc', 'bcc', 'hcp']) p.add_option('-a', '--lattice-constant', type='float', help='Lattice constant in Angstrom.') p.add_option('--c-over-a', type='float', help='c/a ratio.') p.add_option('--height', type='float', help='Height of adsorbate over surface.') p.add_option('--distance', type='float', help='Distance between adsorbate and nearest surface atoms.') p.add_option('-M', '--magnetic-moment', type='float', default=0.0, help='Magnetic moment.') p.add_option('-G', '--gui', action='store_true', help="Pop up ASE's GUI.") opt, args = p.parse_args() if not 1 <= len(args) <= 2: p.error("incorrect number of arguments") if '@' in args[0]: ads, surf = args[0].split('@') else: ads = None surf = args[0] if surf[0].isdigit(): i1 = surf.index('x') n = int(surf[:i1]) i2 = i1 + 1 while surf[i2].isdigit(): i2 += 1 m = int(surf[i1 + 1:i2]) surf = surf[i2:] else: n = 1 m = 1 if surf[-1].isdigit(): if surf[1].isdigit(): face = surf[1:] surf = surf[0] else: face = surf[2:] surf = surf[:2] else: face = None Z = atomic_numbers[surf] state = reference_states[Z] if opt.crystal_structure: x = opt.crystal_structure else: x = state['symmetry'].lower() if opt.lattice_constant: a = opt.lattice_constant else: a = estimate_lattice_constant(surf, x, opt.c_over_a) if x == 'fcc': if face is None: face = '111' slab = fcc111(surf, (n, m, opt.layers), a, opt.vacuum) r = a / np.sqrt(2) / 2 elif x == 'bcc': if face is None: face = '110' slab = bcc110(surf, (n, m, opt.layers), a, opt.vacuum) r = a * np.sqrt(3) / 4 elif x == 'hcp': if face is None: face = '0001' if opt.c_over_a is None: c = np.sqrt(8 / 3.0) * a else: c = opt.c_over_a * a slab = hcp0001(surf, (n, m, opt.layers), a, c, opt.vacuum) r = a / 2 else: raise NotImplementedError magmom = opt.magnetic_moment if magmom is None: magmom = {'Ni': 0.6, 'Co': 1.2, 'Fe': 2.3}.get(surf, 0.0) slab.set_initial_magnetic_moments([magmom] * len(slab)) slab.pbc = 1 name = '%dx%d%s%s' % (n, m, surf, face) if ads: site = 'ontop' if '-' in ads: site, ads = ads.split('-') name = site + '-' + ads + '@' + name symbols = string2symbols(ads) nads = len(symbols) if nads == 1: ads = Atoms(ads) else: ads = molecule(ads) add_adsorbate(slab, ads, 0.0, site) d = opt.distance if d is None: d = r + covalent_radii[ads[0].number] / 2 h = opt.height if h is None: R = slab.positions y = ((R[:-nads] - R[-nads])**2).sum(1).min()**0.5 print y h = (d**2 - y**2)**0.5 print h else: assert opt.distance is None slab.positions[-nads:, 2] += h if len(args) == 2: write(args[1], slab) elif not opt.gui: write(name + '.traj', slab) if opt.gui: view(slab)
def build(): p = OptionParser(usage='%prog [options] [ads@]surf [output file]', version='%prog 0.1', description='Example ads/surf: fcc-CO@2x2Ru0001') p.add_option('-l', '--layers', type='int', default=4, help='Number of layers.') p.add_option('-v', '--vacuum', type='float', default=5.0, help='Vacuum.') p.add_option('-x', '--crystal-structure', help='Crystal structure.', choices=['sc', 'fcc', 'bcc', 'hcp']) p.add_option('-a', '--lattice-constant', type='float', help='Lattice constant in Angstrom.') p.add_option('--c-over-a', type='float', help='c/a ratio.') p.add_option('--height', type='float', help='Height of adsorbate over surface.') p.add_option('--distance', type='float', help='Distance between adsorbate and nearest surface atoms.') p.add_option('-M', '--magnetic-moment', type='float', default=0.0, help='Magnetic moment.') p.add_option('-G', '--gui', action='store_true', help="Pop up ASE's GUI.") p.add_option('-P', '--python', action='store_true', help="Write Python script.") opt, args = p.parse_args() if not 1 <= len(args) <= 2: p.error("incorrect number of arguments") if '@' in args[0]: ads, surf = args[0].split('@') else: ads = None surf = args[0] if surf[0].isdigit(): i1 = surf.index('x') n = int(surf[:i1]) i2 = i1 + 1 while surf[i2].isdigit(): i2 += 1 m = int(surf[i1 + 1:i2]) surf = surf[i2:] else: n = 1 m = 1 if surf[-1].isdigit(): if surf[1].isdigit(): face = surf[1:] surf = surf[0] else: face = surf[2:] surf = surf[:2] else: face = None Z = atomic_numbers[surf] state = reference_states[Z] if opt.crystal_structure: x = opt.crystal_structure else: x = state['symmetry'] if opt.lattice_constant: a = opt.lattice_constant else: a = estimate_lattice_constant(surf, x, opt.c_over_a) script = ['from ase.lattice.surface import ', 'vac = %r' % opt.vacuum, 'a = %r' % a] if x == 'fcc': if face is None: face = '111' slab = fcc111(surf, (n, m, opt.layers), a, opt.vacuum) script[0] += 'fcc111' script += ['slab = fcc111(%r, (%d, %d, %d), a, vac)' % (surf, n, m, opt.layers)] r = a / np.sqrt(2) / 2 elif x == 'bcc': if face is None: face = '110' if face == '110': slab = bcc110(surf, (n, m, opt.layers), a, opt.vacuum) elif face == '100': slab = bcc100(surf, (n, m, opt.layers), a, opt.vacuum) script[0] += 'bcc' + face script += ['slab = bcc%s(%r, (%d, %d, %d), a, vac)' % (face, surf, n, m, opt.layers)] r = a * np.sqrt(3) / 4 elif x == 'hcp': if face is None: face = '0001' if opt.c_over_a is None: c = np.sqrt(8 / 3.0) * a else: c = opt.c_over_a * a slab = hcp0001(surf, (n, m, opt.layers), a, c, opt.vacuum) script[0] += 'hcp0001' script += ['c = %r * a' % (c / a), 'slab = hcp0001(%r, (%d, %d, %d), a, c, vac)' % (surf, n, m, opt.layers)] r = a / 2 elif x == 'diamond': if face is None: face = '111' slab = diamond111(surf, (n, m, opt.layers), a, opt.vacuum) script[0] += 'diamond111' script += ['slab = diamond111(%r, (%d, %d, %d), a, vac)' % (surf, n, m, opt.layers)] r = a * np.sqrt(3) / 8 else: raise NotImplementedError magmom = opt.magnetic_moment if magmom is None: magmom = {'Ni': 0.6, 'Co': 1.2, 'Fe': 2.3}.get(surf, 0.0) slab.set_initial_magnetic_moments([magmom] * len(slab)) if magmom != 0: script += ['slab.set_initial_magnetic_moments([%r] * len(slab))' % magmom] slab.pbc = 1 script += ['slab.pbc = True'] name = '%dx%d%s%s' % (n, m, surf, face) if ads: site = 'ontop' if '-' in ads: site, ads = ads.split('-') name = site + '-' + ads + '@' + name symbols = string2symbols(ads) nads = len(symbols) if nads == 1: script[:0] = ['from ase import Atoms'] script += ['ads = Atoms(%r)' % ads] ads = Atoms(ads) else: script[:0] = ['from ase.structure import molecule'] script += ['ads = molecule(%r)' % ads] ads = molecule(ads) add_adsorbate(slab, ads, 0.0, site) d = opt.distance if d is None: d = r + covalent_radii[ads[0].number] / 2 h = opt.height if h is None: R = slab.positions y = ((R[:-nads] - R[-nads])**2).sum(1).min()**0.5 h = (d**2 - y**2)**0.5 else: assert opt.distance is None slab.positions[-nads:, 2] += h script[1] += ', add_adsorbate' script += ['add_adsorbate(slab, ads, %r, %r)' % (h, site)] if len(args) == 2: write(args[1], slab) script[1:1] = ['from ase.io import write'] script += ['write(%r, slab)' % args[1]] elif not opt.gui: write(name + '.traj', slab) script[1:1] = ['from ase.io import write'] script += ['write(%r, slab)' % (name + '.traj')] if opt.gui: view(slab) script[1:1] = ['from ase.visualize import view'] script += ['view(slab)'] if opt.python: print('\n'.join(script))