コード例 #1
0
ファイル: astromAdd.py プロジェクト: Gabriel-p/astrometry
def jarnoTransf(x_p, y_p, x, y, ra, dec, log):
    """
    Source: https://elonen.iki.fi/code/misc-notes/affine-fit/

    Slightly modified to work better with (ra, dec) and simplified using
    np.linalg.solve() instead of the original Gauss-Jordan method.
    """
    from_pt = np.array([x, y]).T
    to_pt = np.array([ra, dec]).T
    trn = Affine_Fit(from_pt, to_pt)

    print("\nTransformation is:")
    print(trn.To_Str())
    print("\nTransformation is:", file=log)
    print(trn.To_Str(), file=log)
    ra_coeffs, dec_coeffs = trn.coeffs()

    # Transform cross-matched (x, y), for plotting
    ra_x, dec_y = trn.Transform(np.array([x, y]))

    # Fitting error as mean of distances.
    err = np.sqrt((ra - ra_x)**2 + (dec - dec_y)**2).mean()
    print("Fitting error = {:.9f}\n".format(err))
    print("Fitting error = {:.9f}".format(err), file=log)

    ra_p, dec_p = trn.Transform(np.array([x_p, y_p]))
    ra_p = MaskedColumn(ra_p, name='ra')
    dec_p = MaskedColumn(dec_p, name='dec')

    return ra_p, dec_p, ra_x, dec_y, ra_coeffs, dec_coeffs, err
コード例 #2
0
def merge_tables() -> Table:
    """Merges the tables."""
    data = join(load_gaia_tyc(), load_tyc_spec(), keys=['TYC'], join_type='left')
    data = join(
        data, load_ascc(),
        keys=['TYC'],
        join_type='left',
        table_names=('gaia', 'ascc'),
        metadata_conflicts='silent',
    )
    data['SpType'] = MaskedColumn(data['SpType_gaia'].filled(data['SpType_ascc'].filled('')))
    data['SpType'].mask = data['SpType'] == ''
    data.remove_columns(['SpType_gaia', 'SpType_ascc'])

    data = join(data, load_tyc_hd(), keys=['TYC'], join_type='left', metadata_conflicts='silent')

    data = join(
        data,
        load_tyc_teff(),
        keys=['TYC'],
        join_type='left',
        table_names=('gaia', 'tycteff'),
    )

    data['teff_val'] = MaskedColumn(
        data['teff_val_gaia'].filled(data['teff_val_tycteff'].filled(np.nan)),
    )
    data['teff_val'].mask = np.isnan(data['teff_val'])
    data.remove_columns(['teff_val_tycteff', 'teff_val_gaia'])

    data = join(data, load_sao(), keys=['TYC'], join_type='left')
    return data
コード例 #3
0
ファイル: astromAdd.py プロジェクト: Gabriel-p/astrometry
def px2Eq(x_p, y_p, cr_m_data):
    """
    Transform pixels to (ra, dec) using the correlated astrometry.net file.
    """
    ra, dec = cr_m_data['field_ra'], cr_m_data['field_dec']
    x, y = cr_m_data['field_x'], cr_m_data['field_y']

    def func(X, a, b, c, d, e, f):
        x, y = X
        return a + b * x + c * y + d * x * y + e * x**2 + f * y**2

    # Find transformation from (x,y) to (ra,dec)
    p0 = (100., 0., 0., 0., 0., 0.)
    x2ra = curve_fit(func, (x, y), ra, p0)[0]
    y2de = curve_fit(func, (x, y), dec, p0)[0]

    print(("ra   = {:.7f} + {:.7f} * x + {:.7f} * y + {:.7f} * xy +"
           " {:.7f} * x^2 + {:.7f} * y^2 +").format(*x2ra))
    print(("dec = {:.7f} + {:.7f} * x + {:.7f} * y + {:.7f} * xy + "
           "{:.7f} * x^2 + {:.7f} * y^2 +").format(*y2de))

    # Transform pixel (x,y) coordinates into the (ra,dec) system
    ra_p = func((x_p, y_p), *x2ra)
    dec_p = func((x_p, y_p), *y2de)

    ra_p = MaskedColumn(ra_p, name='ra')
    dec_p = MaskedColumn(dec_p, name='dec')

    return ra_p, dec_p
コード例 #4
0
ファイル: astromAdd.py プロジェクト: Gabriel-p/astrometry
def nudgeTransf(x_p, y_p, cr_m_data):
    """
    This works but gives *very* poor results (July 2019)
    """
    ra, dec = cr_m_data['field_ra'], cr_m_data['field_dec']
    x, y = cr_m_data['field_x'], cr_m_data['field_y']

    import nudged

    dom = list(map(list, zip(x, y)))
    ran = list(map(list, zip(-ra, dec)))

    trans = nudged.estimate(dom, ran)

    cc = list(map(list, list(np.array([x_p, y_p]).T)))
    ra_p, dec_p = np.array(trans.transform(cc)).T
    ra_p = -ra_p

    print(trans.get_matrix())
    print(trans.get_rotation())
    print(trans.get_scale())
    print(trans.get_translation())

    # plt.subplot(221);plt.title("dom");plt.scatter(x, y)
    # plt.subplot(222);plt.title("ran");plt.scatter(ra, dec)
    # plt.subplot(223);plt.title("(x, y)");plt.scatter(x_p, y_p)
    # plt.subplot(224);plt.title("(x_t, y_t)");plt.scatter(ra_p, dec_p)
    # plt.show()

    ra_p = MaskedColumn(ra_p, name='ra')
    dec_p = MaskedColumn(dec_p, name='dec')

    return ra_p, dec_p
コード例 #5
0
def test_coalesce_basic():
    col1 = MaskedColumn(data=[1, 0], mask=[False, True])
    col2 = MaskedColumn(data=[0, 2], mask=[True, False])
    for result in [coalesce((col1, col2)), coalesce((col2, col1))]:
        assert result[0] == 1
        assert result[1] == 2
        assert result.mask.any() == False
コード例 #6
0
def _map_ids(tbl: Table) -> dict[int, int]:
    gaia_ids = np.zeros(len(tbl), dtype=np.int64)
    cel_ids = np.zeros(len(tbl), dtype=np.uint32)
    id_idx = {}

    for i, ids in enumerate(tbl['ids']):
        for ident in ids.split('|'):
            if ident.startswith('HIP'):
                hip = int(ident[3:].strip())
                assert hip not in id_idx
                id_idx[hip] = i
                cel_ids[i] = hip
            elif ident.startswith('TYC'):
                tycs = [int(t) for t in ident[3:].strip().split('-')]
                tyc = tycs[0] + tycs[1] * 10000 + tycs[2] * 1000000000
                assert tyc not in id_idx
                id_idx[tyc] = i
                if cel_ids[i] == 0:
                    cel_ids[i] = tyc
            elif ident.startswith('Gaia DR2'):
                gaia_ids[i] = int(ident[8:].strip())

    tbl.add_columns([
        MaskedColumn(data=gaia_ids, name='gaia'),
        MaskedColumn(data=cel_ids, name='hip'),
    ])

    return id_idx
コード例 #7
0
    def _fromat_column_entry(self, t):
        for n in self._numeric_fields:
            if n in t.colnames:

                try:
                    if None in t[n].data:

                        t[n] = MaskedColumn(t[n].data,
                                            name=n,
                                            dtype=np.float,
                                            mask=t[n].data == None)
                    else:
                        t[n] = MaskedColumn(t[n].data, name=n, dtype=np.float)
                    t[n].format = '%e'
                except:

                    for ID, v in enumerate(t[n].data):
                        try:
                            c = ast.literal_eval(t[n].data[ID])
                            if type(c) == int:
                                t[n].data[ID] = '%d' % c
                            else:
                                t[n].data[ID] = '%e' % c
                        except:
                            pass
コード例 #8
0
ファイル: test_masked.py プロジェクト: zupeiza/astropy
def test_mask_copy():
    """Test that the mask is copied when copying a table (issue #7362)."""

    c = MaskedColumn([1, 2], mask=[False, True])
    c2 = MaskedColumn(c, copy=True)
    c2.mask[0] = True
    assert np.all(c.mask == [False, True])
    assert np.all(c2.mask == [True, True])
コード例 #9
0
ファイル: test_masked.py プロジェクト: zonca/astropy
 def setup_method(self, method):
     self.a = MaskedColumn(name='a', data=[1, 2, 3], fill_value=1)
     self.b = MaskedColumn(name='b', data=[4, 5, 6], mask=True)
     self.c = MaskedColumn(name='c', data=[7, 8, 9], mask=False)
     self.d_mask = np.array([False, True, False])
     self.d = MaskedColumn(name='d', data=[7, 8, 7], mask=self.d_mask)
     self.t = Table([self.a, self.b], masked=True)
     self.ca = Column(name='ca', data=[1, 2, 3])
コード例 #10
0
def merge_all() -> Table:
    """Merges the HIP and TYC data."""
    hip_data = process_hip()

    # extract the non-Gaia sources to make the merging easier
    non_gaia = hip_data[hip_data['source_id'].mask]

    # merge object data for objects in both catalogues
    hip_data = join(hip_data[np.logical_not(hip_data['source_id'].mask)],
                    process_tyc(),
                    keys=['source_id'],
                    table_names=['hip', 'tyc'],
                    join_type='outer')

    # Mask blank spectral type and component identifiers
    for str_col in (c for c in hip_data.colnames if hip_data[c].dtype.kind == 'U'):
        hip_data[str_col].mask = np.logical_or(hip_data[str_col].mask, hip_data[str_col] == '')

    prefer_tyc = {'HD', 'SAO', 'Comp'}

    for base_col in (c[:-4] for c in hip_data.colnames if c.endswith('_hip')):
        hip_col = base_col + '_hip'
        tyc_col = base_col + '_tyc'
        hip_data.rename_column(hip_col, base_col)
        if isinstance(hip_data[base_col], MaskedColumn):
            mask = np.logical_and(hip_data[base_col].mask, hip_data[tyc_col].mask)
            if base_col in prefer_tyc:
                base_data = hip_data[tyc_col].filled(hip_data[base_col])
            else:
                base_data = hip_data[base_col].filled(hip_data[tyc_col])
            hip_data[base_col] = MaskedColumn(base_data, mask=mask)
        hip_data.remove_column(tyc_col)

    hip_data['HIP'] = hip_data['HIP'].filled(hip_data['TYC'])
    hip_data.remove_columns('TYC')

    # Add the non-Gaia stars back into the dataset
    hip_data = vstack([hip_data, non_gaia], join_type='outer', metadata_conflicts='silent')

    # Merge SAO, preferring the values from the SAO catalogue
    sao = load_sao()
    sao = sao[np.isin(sao['HD'], hip_data[np.logical_not(hip_data['HD'].mask)]['HD'])]
    hip_data['SAO'].mask = np.logical_or(hip_data['SAO'].mask,
                                         np.isin(hip_data['SAO'], sao['SAO']))

    hd_sao = join(hip_data[np.logical_not(hip_data['HD'].mask)],
                  sao,
                  keys=['HD'],
                  table_names=['xref', 'sao'],
                  join_type='left')
    hd_sao.rename_column('SAO_xref', 'SAO')
    hd_sao['SAO'] = MaskedColumn(hd_sao['SAO_sao'].filled(hd_sao['SAO']),
                                 mask=np.logical_and(hd_sao['SAO'].mask,
                                                     hd_sao['SAO_sao'].mask))
    hd_sao.remove_column('SAO_sao')

    return vstack([hip_data[hip_data['HD'].mask], hd_sao], join_type='exact')
コード例 #11
0
ファイル: test_masked.py プロジェクト: zupeiza/astropy
 def test_add_masked_row_to_masked_table_mapping4(self):
     # When adding values to a masked table, if the mask is specified as a
     # dict, then keys in values should match keys in mask
     t = Table(masked=True)
     t.add_column(MaskedColumn(name='a', data=[1], mask=[0]))
     t.add_column(MaskedColumn(name='b', data=[4], mask=[1]))
     with pytest.raises(ValueError) as exc:
         t.add_row({'b': 5}, mask={'a': True})
     assert exc.value.args[0] == 'keys in mask should match keys in vals'
コード例 #12
0
ファイル: test_masked.py プロジェクト: zupeiza/astropy
 def test_add_masked_row_to_masked_table_mismatch(self):
     t = Table(masked=True)
     t.add_column(MaskedColumn(name='a', data=[1], mask=[0]))
     t.add_column(MaskedColumn(name='b', data=[4], mask=[1]))
     with pytest.raises(TypeError) as exc:
         t.add_row([2, 5], mask={'a': 1, 'b': 0})
     assert exc.value.args[0] == "Mismatch between type of vals and mask"
     with pytest.raises(TypeError) as exc:
         t.add_row({'b': 5, 'a': 2}, mask=[1, 0])
     assert exc.value.args[0] == "Mismatch between type of vals and mask"
コード例 #13
0
 def setup_method(self, method):
     self.c1 = MaskedColumn(name='col1',
                            data=[1, 2, 3],
                            mask=[False, False, False])
     self.c2 = MaskedColumn(name='col2',
                            data=[4, 5, 6],
                            mask=[True, False, False])
     self.c3 = MaskedColumn(name='col3',
                            data=[7, 8, 9],
                            mask=[False, True, False])
コード例 #14
0
 def setup_method(self, method):
     self.a = MaskedColumn(name='a', data=[1, 2, 3], fill_value=1)
     self.b = MaskedColumn(name='b', data=[4, 5, 6], mask=True)
     self.c = MaskedColumn(name='c', data=[7, 8, 9], mask=False)
     self.d_mask = np.array([False, True, False])
     self.d = MaskedColumn(name='d', data=[7, 8, 7], mask=self.d_mask)
     self.t = Table([self.a, self.b], masked=True)
     self.ca = Column(name='ca', data=[1, 2, 3])
     self.sc = MaskedColumn(name='sc', data=[(1, 1.), (2, 2.), (3, 3.)],
                            dtype='i8,f8', fill_value=(0, -1.))
コード例 #15
0
ファイル: test_masked.py プロジェクト: zupeiza/astropy
 def test_remove_masked_column(self):
     t = Table(masked=True)
     t.add_column(MaskedColumn(name='a', data=[1, 2, 3], mask=[0, 1, 0]))
     t['a'].fill_value = 42
     t.add_column(MaskedColumn(name='b', data=[4, 5, 6], mask=[1, 0, 1]))
     t.remove_column('b')
     assert t.masked
     assert np.all(t['a'] == np.array([1, 2, 3]))
     assert np.all(t['a'].mask == np.array([0, 1, 0], bool))
     assert t['a'].fill_value == 42
     assert t.colnames == ['a']
コード例 #16
0
ファイル: test_masked.py プロジェクト: zupeiza/astropy
 def test_add_masked_row_to_masked_table_mapping1(self):
     t = Table(masked=True)
     t.add_column(MaskedColumn(name='a', data=[1], mask=[0]))
     t.add_column(MaskedColumn(name='b', data=[4], mask=[1]))
     t.add_row({'b': 5, 'a': 2}, mask={'a': 1, 'b': 0})
     t.add_row({'a': 3, 'b': 6}, mask={'b': 1, 'a': 0})
     assert t.masked
     assert np.all(np.array(t['a']) == np.array([1, 2, 3]))
     assert np.all(t['a'].mask == np.array([0, 1, 0], bool))
     assert np.all(np.array(t['b']) == np.array([4, 5, 6]))
     assert np.all(t['b'].mask == np.array([1, 0, 1], bool))
コード例 #17
0
 def test_add_masked_column_to_masked_table(self):
     t = Table(masked=True)
     assert t.masked
     t.add_column(MaskedColumn(name='a', data=[1, 2, 3], mask=[0, 1, 0]))
     assert t.masked
     t.add_column(MaskedColumn(name='b', data=[4, 5, 6], mask=[1, 0, 1]))
     assert t.masked
     assert np.all(t['a'] == np.array([1, 2, 3]))
     assert np.all(t['a'].mask == np.array([0, 1, 0], bool))
     assert np.all(t['b'] == np.array([4, 5, 6]))
     assert np.all(t['b'].mask == np.array([1, 0, 1], bool))
コード例 #18
0
ファイル: test_masked.py プロジェクト: zupeiza/astropy
 def test_add_masked_row_to_masked_table_iterable(self):
     t = Table(masked=True)
     t.add_column(MaskedColumn(name='a', data=[1], mask=[0]))
     t.add_column(MaskedColumn(name='b', data=[4], mask=[1]))
     t.add_row([2, 5], mask=[1, 0])
     t.add_row([3, 6], mask=[0, 1])
     assert t.masked
     assert np.all(np.array(t['a']) == np.array([1, 2, 3]))
     assert np.all(t['a'].mask == np.array([0, 1, 0], bool))
     assert np.all(np.array(t['b']) == np.array([4, 5, 6]))
     assert np.all(t['b'].mask == np.array([1, 0, 1], bool))
コード例 #19
0
ファイル: test_masked.py プロジェクト: zupeiza/astropy
 def test_add_masked_row_to_masked_table_mapping2(self):
     # When adding values to a masked table, if the mask is specified as a
     # dict, then values not specified will have mask values set to True
     t = Table(masked=True)
     t.add_column(MaskedColumn(name='a', data=[1], mask=[0]))
     t.add_column(MaskedColumn(name='b', data=[4], mask=[1]))
     t.add_row({'b': 5}, mask={'b': 0})
     t.add_row({'a': 3}, mask={'a': 0})
     assert t.masked
     assert t['a'][0] == 1 and t['a'][2] == 3
     assert np.all(t['a'].mask == np.array([0, 1, 0], bool))
     assert t['b'][1] == 5
     assert np.all(t['b'].mask == np.array([1, 0, 1], bool))
コード例 #20
0
ファイル: test_masked.py プロジェクト: zupeiza/astropy
 def test_add_masked_row_to_masked_table_mapping3(self):
     # When adding values to a masked table, if mask is not passed to
     # add_row, then the mask should be set to False if values are present
     # and True if not.
     t = Table(masked=True)
     t.add_column(MaskedColumn(name='a', data=[1], mask=[0]))
     t.add_column(MaskedColumn(name='b', data=[4], mask=[1]))
     t.add_row({'b': 5})
     t.add_row({'a': 3})
     assert t.masked
     assert t['a'][0] == 1 and t['a'][2] == 3
     assert np.all(t['a'].mask == np.array([0, 1, 0], bool))
     assert t['b'][1] == 5
     assert np.all(t['b'].mask == np.array([1, 0, 1], bool))
コード例 #21
0
ファイル: test_masked.py プロジェクト: zupeiza/astropy
def test_masked_column_with_unit_in_qtable():
    """Test that adding a MaskedColumn with a unit to QTable issues warning"""
    t = QTable()
    t['a'] = MaskedColumn([1, 2])
    assert isinstance(t['a'], MaskedColumn)

    t['b'] = MaskedColumn([1, 2], unit=u.m)
    assert isinstance(t['b'], u.Quantity)

    with pytest.warns(UserWarning,
                      match="dropping mask in Quantity column 'c'") as w:
        t['c'] = MaskedColumn([1, 2], unit=u.m, mask=[True, False])
    assert len(w) == 1
    assert isinstance(t['b'], u.Quantity)
コード例 #22
0
def test_masked_column_with_unit_in_qtable():
    """Test that adding a MaskedColumn with a unit to QTable creates a MaskedQuantity."""
    MaskedQuantity = Masked(u.Quantity)

    t = QTable()
    t['a'] = MaskedColumn([1, 2])
    assert isinstance(t['a'], MaskedColumn)

    t['b'] = MaskedColumn([1, 2], unit=u.m)
    assert isinstance(t['b'], MaskedQuantity)
    assert np.all(t['b'].mask == False)  # noqa

    t['c'] = MaskedColumn([1, 2], unit=u.m, mask=[True, False])
    assert isinstance(t['c'], MaskedQuantity)
    assert np.all(t['c'].mask == [True, False])
コード例 #23
0
ファイル: test_masked.py プロジェクト: zupeiza/astropy
def test_coercing_fill_value_type():
    """
    Test that masked column fill_value is coerced into the correct column type.
    """
    # This is the original example posted on the astropy@scipy mailing list
    t = Table({'a': ['1']}, masked=True)
    t['a'].set_fill_value('0')
    t2 = Table(t, names=['a'], dtype=[np.int32])
    assert isinstance(t2['a'].fill_value, np.int32)

    # Unit test the same thing.
    c = MaskedColumn(['1'])
    c.set_fill_value('0')
    c2 = MaskedColumn(c, dtype=np.int32)
    assert isinstance(c2.fill_value, np.int32)
コード例 #24
0
def test_parsing_columns( columns_file ):
    """
     Test parsing of COLUMN elements
        <COLUMN dmtype ref >
          <OPTIONMAPPING>
             <OPTION>"string"</OPTION>
             <ENUMLITERAL>"vodml-id"</ENUMLITERAL> or <SEMANTICCONCEPT>
          </OPTIONMAPPING>
        </COLUMN>

     The parser pushes the Table rows into value arrays

    """
    luminosity = columns_file.find_instances( LuminosityMeasurement  )[0]

    # COLUMN with dmtype, value  (ivoa:string)
    assert len(luminosity.description) == 2
    assert luminosity.description[0] == "some descriptive text"
    assert luminosity.description[1] == "more descriptive text"

    # COLUMN with dmtype, value, unit  (ivoa:RealQuantity)
    #  - uses astropy Quantity
    #    o luminosity.value    = Quantity with value array length 2 + unit
    #    o luminosity.value[0] = Quantity with first value + unit
    assert len(luminosity.value) == 2
    expected_lum  = numpy.array([15.718, 14.847], dtype='float32') * u.Unit('mag')
    numpy.testing.assert_array_equal( expected_lum, luminosity.value )
    
    # COLUMN with OPTIONMAPPING
    # MCD NOTE: TODO - enumeration type == 'string'.. OPTIONMAPPING not parsed/interpreted
    assert len(luminosity.type) == 2
    assert luminosity.type[0] == "magnitude"
    assert luminosity.type[1] == "magnitude"
    #assert (luminosity.optionmapping) == 2

    # Check multiplicity handling
    #  o values dimension 1 == 'row'
    elem = columns_file.find_instances( MultiObj  )[0]
    assert len(elem.a) == 2
    assert isinstance(elem.a, MaskedColumn)
    assert elem.a.shape == (2,)
    numpy.testing.assert_array_equal( elem.a, MaskedColumn([100.0, 100.1], dtype='float32'))

    # MCD NOTE: TODO - check this, I do not think 'b' should be a List of MaskedColumn
    assert len(elem.b) == 1                     # b is a list of length=1
    assert isinstance(elem.b[0], MaskedColumn)  #   of MaskedColumn
    assert elem.b[0].shape == (2,2)             #   2 rows x 2 values each
    numpy.testing.assert_array_equal( elem.b[0], MaskedColumn([[200.0, 201.0],[200.1,201.1]], dtype='float32'))
コード例 #25
0
ファイル: test_masked.py プロジェクト: zupeiza/astropy
 def test_set_get_fill_value_for_str_column(self):
     c = MaskedColumn(name='c', data=['xxxx', 'yyyy'], mask=[True, False])
     # assert np.all(c.filled() == ['N/A', 'yyyy'])
     c.fill_value = 'ABCDEF'
     assert c.fill_value == 'ABCD'  # string truncated to dtype length
     assert np.all(c.filled() == ['ABCD', 'yyyy'])
     assert np.all(c.filled('XY') == ['XY', 'yyyy'])
コード例 #26
0
    def test_astropy(self):
        """test astropy table
           + test null_value
           + test masked column
        """
        tablemaker = CDSTablesMaker()
        ntab = Table([(1, 2, None, 4, 999), (4.0, 1115.0, np.NaN, None, 999),
                      (1.1, 2., 999, 12.3, 12.3),
                      (-1.001, 2., 0, -99.12, np.NaN)],
                     names=['a', 'b', 'col3', 'col4'])
        ntab["col4"] = MaskedColumn(ntab["col4"],
                                    mask=[(val > 0) for val in ntab["col4"]])

        tablename = ReadMeCase.__result_file("astropy")
        table = tablemaker.addTable(ntab,
                                    name=tablename,
                                    description="test astropy table",
                                    nullvalue=999)
        col = table.get_column("col4")
        col.set_null_value(-1.001)

        tablemaker.writeCDSTables()
        self.assertTrue(self.__test_file(tablename, 3), "astropy file")

        readme = ReadMeCase.__readme_file("astropy")
        with open(readme, "w") as fd:
            tablemaker.makeReadMe(out=fd)
        self.assertTrue(self.__test_file(readme, 5), "Readme for astropy")
        sys.stderr.write("generate {0}/{1} {0}/{2}\n".format(
            RESULT_DIR, tablename, readme))
コード例 #27
0
ファイル: core.py プロジェクト: tgellis/astroquery
def _gemini_json_to_table(json):
    """
    takes a JSON object as returned from the Gemini archive webserver and turns it into an `~astropy.table.Table`

    Parameters
    ----------
    json : dict
        A JSON object from the Gemini archive webserver

    Returns
    -------
    response : `~astropy.table.Table`
    """

    data_table = Table(masked=True)

    for key in __keys__:
        col_data = np.array([obj.get(key, None) for obj in json])

        atype = str

        col_mask = np.equal(col_data, None)
        data_table.add_column(MaskedColumn(col_data.astype(atype), name=key, mask=col_mask))

    return data_table
コード例 #28
0
ファイル: test_masked.py プロジェクト: zupeiza/astropy
 def setup_method(self, method):
     mask = [True, False, False]
     self.meta = {'a': 1, 'b': [2, 3]}
     self.a = MaskedColumn(name='a',
                           data=[1, 2, 3],
                           fill_value=10,
                           mask=mask,
                           meta={'a': 1})
     self.b = MaskedColumn(name='b',
                           data=[4.0, 5.0, 6.0],
                           fill_value=10.0,
                           mask=mask)
     self.c = MaskedColumn(name='c',
                           data=['7', '8', '9'],
                           fill_value='1',
                           mask=mask)
コード例 #29
0
def merge_gaia(tbl: Table) -> Table:
    """Merges Gaia data for non-Celestia stars."""
    with gzip.open(GAIA_PATH, 'rb') as f:
        gaia = votable.parse_single_table(f).to_table()

    bp_rp = gaia['bp_rp'].filled(0)
    bp_rp2 = bp_rp * bp_rp

    gaia.add_column(
        MaskedColumn(data=gaia['phot_g_mean_mag'].filled(np.nan) + 0.01760 +
                     bp_rp * 0.006860 + bp_rp2 * 0.1732,
                     name='flux',
                     mask=gaia['phot_g_mean_mag'].mask))

    gaia.remove_columns(['phot_g_mean_mag', 'bp_rp'])
    gaia.rename_column('source_id', 'gaia')
    gaia.rename_column('r_est', 'dist')

    has_gaia = tbl[np.logical_not(tbl['gaia'].mask)]
    merged = join(has_gaia,
                  gaia,
                  keys=['gaia'],
                  join_type='left',
                  table_names=['cel', 'gaia'])
    merged['ra'] = np.where(merged['ra_gaia'].mask, merged['ra_cel'],
                            merged['ra_gaia'])
    merged['dec'] = np.where(merged['dec_gaia'].mask, merged['dec_cel'],
                             merged['dec_gaia'])
    merged.add_columns([
        MaskedColumn(data=np.where(merged['dist_gaia'].mask,
                                   merged['dist_cel'], merged['dist_gaia']),
                     name='dist',
                     mask=np.logical_and(merged['dist_gaia'].mask,
                                         merged['dist_cel'].mask)),
        MaskedColumn(data=np.where(merged['flux_cel'].mask,
                                   merged['flux_gaia'], merged['flux_cel']),
                     name='flux',
                     mask=np.logical_and(merged['flux_cel'].mask,
                                         merged['flux_gaia'].mask))
    ])
    merged.remove_columns([
        'ra_cel', 'ra_gaia', 'dec_cel', 'dec_gaia', 'dist_cel', 'dist_gaia',
        'flux_cel', 'flux_gaia'
    ])

    return vstack([tbl[tbl['gaia'].mask], merged], join_type='exact')
コード例 #30
0
ファイル: test_masked.py プロジェクト: zupeiza/astropy
 def test_set_get_fill_value_for_structured_column(self):
     assert self.sc.fill_value == np.array((0, -1.), self.sc.dtype)
     sc = self.sc.copy()
     assert sc.fill_value.item() == (0, -1.)
     sc.fill_value = (-1, np.inf)
     assert sc.fill_value == np.array((-1, np.inf), self.sc.dtype)
     sc2 = MaskedColumn(sc, fill_value=(-2, -np.inf))
     assert sc2.fill_value == np.array((-2, -np.inf), sc2.dtype)