コード例 #1
0
ファイル: test_masked.py プロジェクト: zupeiza/astropy
 def test_set_get_fill_value_for_str_column(self):
     c = MaskedColumn(name='c', data=['xxxx', 'yyyy'], mask=[True, False])
     # assert np.all(c.filled() == ['N/A', 'yyyy'])
     c.fill_value = 'ABCDEF'
     assert c.fill_value == 'ABCD'  # string truncated to dtype length
     assert np.all(c.filled() == ['ABCD', 'yyyy'])
     assert np.all(c.filled('XY') == ['XY', 'yyyy'])
コード例 #2
0
ファイル: test_masked.py プロジェクト: Cadair/astropy
 def test_set_get_fill_value_for_str_column(self):
     c = MaskedColumn(name='c', data=['xxxx', 'yyyy'], mask=[True, False])
     # assert np.all(c.filled() == ['N/A', 'yyyy'])
     c.fill_value = 'ABCDEF'
     assert c.fill_value == 'ABCD'  # string truncated to dtype length
     assert np.all(c.filled() == ['ABCD', 'yyyy'])
     assert np.all(c.filled('XY') == ['XY', 'yyyy'])
コード例 #3
0
def test_pickle_masked_column(protocol):
    c = MaskedColumn(data=[1, 2], name='a', format='%05d', description='col a', unit='cm',
                     meta={'a': 1})
    c.mask[1] = True
    c.fill_value = -99

    cs = pickle.dumps(c)
    cp = pickle.loads(cs)

    assert np.all(cp._data == c._data)
    assert np.all(cp.mask == c.mask)
    assert cp.attrs_equal(c)
    assert cp.fill_value == -99
    assert cp._parent_table is None
    assert repr(c) == repr(cp)
コード例 #4
0
def merge_lightcurve_fits(options):
    """Pythom program to merge the lightcurve fit results into a sigle format"""
    import numpy
    import astropy
    import JLA_library as JLA
    from astropy.table import Table, MaskedColumn, vstack

    params = JLA.build_dictionary(options.config)

    # ---------------- JLA ------------------------
    lightCurveFits = JLA.get_full_path(params['JLAlightCurveFits'])
    f=open(lightCurveFits)
    header=f.readlines()
    f.close()
    names=header[0].strip('#').split()

    # I imagine that the tables package in astropy could also be used to read the ascii input file
    SNeSpec = Table(numpy.genfromtxt(lightCurveFits,
                               skip_header=1,
                               dtype='S12,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8',
                               names=names))

    nSNeSpec=len(SNeSpec)
    print 'There are %d SNe from the spectrscopically confirmed sample' % (nSNeSpec)

    # Add an extra column to the table
    SNeSpec['source']=['JLA']*nSNeSpec

    # ---------------- Shuvo's sample ------------------------
    # Photometrically identified SNe in Shuvo's sample, if the parameter exists
    if params['photLightCurveFits']!='None':
        lightCurveFits = JLA.get_full_path(params['photLightCurveFits'])
        SNePhot=Table.read(lightCurveFits, format='fits')
        nSNePhot=len(SNePhot)

        print 'There are %d SNe from the photometric sample' % (nSNePhot)

        # Converting from Shuvo's names to thosed used by JLA
        conversion={'name':'name_adj', 'zcmb':None, 'zhel':'z', 'dz':None, 'mb':'mb', 'dmb':'emb', 'x1':'x1', 'dx1':'ex1', 'color':'c', 'dcolor':'ec', '3rdvar':'col27', 'd3rdvar':'d3rdvar', 'tmax':None, 'dtmax':None, 'cov_m_s':'cov_m_x1', 'cov_m_c':'cov_m_c', 'cov_s_c':'cov_x1_c', 'set':None, 'ra':None, 'dec':None, 'biascor':None}

        # Add the uncertainty in the mass column
        SNePhot['d3rdvar']=(SNePhot['col29']+SNePhot['col28'])/2. - SNePhot['col27']

        # Remove columns that are not listed in conversion
    
        for colname in SNePhot.colnames:
            if colname not in conversion.values():
                SNePhot.remove_column(colname)

    
        for key in conversion.keys():
            # Rename the column if it does not already exist
            if conversion[key]!=None and conversion[key]!=key:
                SNePhot.rename_column(conversion[key], key)
            elif conversion[key]==None:
                # Create it, mask it, and fill all values
                SNePhot[key]=MaskedColumn(numpy.zeros(nSNePhot), numpy.ones(nSNePhot,bool))
                SNePhot[key].fill_value=-99 # does not work as expected, so we set it explicitly in the next line
                SNePhot[key]=-99.9
            else:
                # Do nothing if the column already exists
                pass

        # Add the source column
        SNePhot['source']="Phot_Uddin"       

    # ----------------------  CfA4 ----------------------------------
    if params['CfA4LightCurveFits']!='None':
        lightCurveFits = JLA.get_full_path(params['CfA4LightCurveFits'])
        f=open(lightCurveFits)
        header=f.readlines()
        f.close()
        names=header[0].strip('#').split(',')    

        SNeCfA4=Table(numpy.genfromtxt(lightCurveFits,
                                       skip_header=1,
                                       dtype='S12,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8',
                                       names=names,delimiter=','))

        nSNeCfA4=len(SNeCfA4) 
    
        conversion={'name':'name', 'zcmb':None, 'zhel':'z', 'dz':None, 'mb':'mb', 'dmb':'emb', 'x1':'x1', 'dx1':'ex1', 'color':'c', 'dcolor':'ec', '3rdvar':None, 'd3rdvar':None, 'tmax':None, 'dtmax':None, 'cov_m_s':'cov_m_x1', 'cov_m_c':'cov_m_c', 'cov_s_c':'cov_x1_c', 'set':None, 'ra':None, 'dec':None, 'biascor':None}

        # Remove columns that are not listed in conversion
    
        for colname in SNeCfA4.colnames:
            if colname not in conversion.values():
                SNeCfA4.remove_column(colname)
    
        for key in conversion.keys():
            # Rename the column if it does not already exist
            if conversion[key]!=None and conversion[key]!=key:
                SNeCfA4.rename_column(conversion[key], key)
            elif conversion[key]==None:
                # Create it, mask it, and fill all values
                SNeCfA4[key]=MaskedColumn(numpy.zeros(nSNeCfA4), numpy.ones(nSNeCfA4,bool))
                SNeCfA4[key].fill_value=-99 # does not work as expected, so we set it explicitly in the next line
                SNeCfA4[key]=-99.9
            else:
                # Do nothing if the column already exists
                pass

        # Add the source column
        SNeCfA4['source']="CfA4"   

    try:
        SNe=vstack([SNeSpec,SNePhot,SNeCfA4])
    except:
        SNe=SNeSpec

    # Write out the result as a FITS table
    date = JLA.get_date()
    SNe.write('%s_%s.fits' % (options.output, date), format='fits')

    return
コード例 #5
0
def merge_lightcurve_fits(options):
    """Pythom program to merge the lightcurve fit results into a sigle format"""
    import numpy
    import astropy
    import JLA_library as JLA
    from astropy.table import Table, MaskedColumn, vstack

    params = JLA.build_dictionary(options.config)

    # ---------------- JLA ------------------------
    lightCurveFits = JLA.get_full_path(params['JLAlightCurveFits'])
    f = open(lightCurveFits)
    header = f.readlines()
    f.close()
    names = header[0].strip('#').split()

    # I imagine that the tables package in astropy could also be used to read the ascii input file
    SNeSpec = Table(
        numpy.genfromtxt(
            lightCurveFits,
            skip_header=1,
            dtype=
            'S12,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8',
            names=names))

    nSNeSpec = len(SNeSpec)
    print 'There are %d SNe from the spectrscopically confirmed sample' % (
        nSNeSpec)

    # Add an extra column to the table
    SNeSpec['source'] = ['JLA'] * nSNeSpec

    # ---------------- Shuvo's sample ------------------------
    # Photometrically identified SNe in Shuvo's sample, if the parameter exists
    if params['photLightCurveFits'] != 'None':
        lightCurveFits = JLA.get_full_path(params['photLightCurveFits'])
        SNePhot = Table.read(lightCurveFits, format='fits')
        nSNePhot = len(SNePhot)

        print 'There are %d SNe from the photometric sample' % (nSNePhot)

        # Converting from Shuvo's names to thosed used by JLA
        conversion = {
            'name': 'name_adj',
            'zcmb': None,
            'zhel': 'z',
            'dz': None,
            'mb': 'mb',
            'dmb': 'emb',
            'x1': 'x1',
            'dx1': 'ex1',
            'color': 'c',
            'dcolor': 'ec',
            '3rdvar': 'col27',
            'd3rdvar': 'd3rdvar',
            'tmax': None,
            'dtmax': None,
            'cov_m_s': 'cov_m_x1',
            'cov_m_c': 'cov_m_c',
            'cov_s_c': 'cov_x1_c',
            'set': None,
            'ra': None,
            'dec': None,
            'biascor': None
        }

        # Add the uncertainty in the mass column
        SNePhot['d3rdvar'] = (SNePhot['col29'] +
                              SNePhot['col28']) / 2. - SNePhot['col27']

        # Remove columns that are not listed in conversion

        for colname in SNePhot.colnames:
            if colname not in conversion.values():
                SNePhot.remove_column(colname)

        for key in conversion.keys():
            # Rename the column if it does not already exist
            if conversion[key] != None and conversion[key] != key:
                SNePhot.rename_column(conversion[key], key)
            elif conversion[key] == None:
                # Create it, mask it, and fill all values
                SNePhot[key] = MaskedColumn(numpy.zeros(nSNePhot),
                                            numpy.ones(nSNePhot, bool))
                SNePhot[
                    key].fill_value = -99  # does not work as expected, so we set it explicitly in the next line
                SNePhot[key] = -99.9
            else:
                # Do nothing if the column already exists
                pass

        # Add the source column
        SNePhot['source'] = "Phot_Uddin"

    # ----------------------  CfA4 ----------------------------------
    if params['CfA4LightCurveFits'] != 'None':
        lightCurveFits = JLA.get_full_path(params['CfA4LightCurveFits'])
        f = open(lightCurveFits)
        header = f.readlines()
        f.close()
        names = header[0].strip('#').split(',')

        SNeCfA4 = Table(
            numpy.genfromtxt(lightCurveFits,
                             skip_header=1,
                             dtype='S12,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8',
                             names=names,
                             delimiter=','))

        nSNeCfA4 = len(SNeCfA4)

        conversion = {
            'name': 'name',
            'zcmb': None,
            'zhel': 'z',
            'dz': None,
            'mb': 'mb',
            'dmb': 'emb',
            'x1': 'x1',
            'dx1': 'ex1',
            'color': 'c',
            'dcolor': 'ec',
            '3rdvar': None,
            'd3rdvar': None,
            'tmax': None,
            'dtmax': None,
            'cov_m_s': 'cov_m_x1',
            'cov_m_c': 'cov_m_c',
            'cov_s_c': 'cov_x1_c',
            'set': None,
            'ra': None,
            'dec': None,
            'biascor': None
        }

        # Remove columns that are not listed in conversion

        for colname in SNeCfA4.colnames:
            if colname not in conversion.values():
                SNeCfA4.remove_column(colname)

        for key in conversion.keys():
            # Rename the column if it does not already exist
            if conversion[key] != None and conversion[key] != key:
                SNeCfA4.rename_column(conversion[key], key)
            elif conversion[key] == None:
                # Create it, mask it, and fill all values
                SNeCfA4[key] = MaskedColumn(numpy.zeros(nSNeCfA4),
                                            numpy.ones(nSNeCfA4, bool))
                SNeCfA4[
                    key].fill_value = -99  # does not work as expected, so we set it explicitly in the next line
                SNeCfA4[key] = -99.9
            else:
                # Do nothing if the column already exists
                pass

        # Add the source column
        SNeCfA4['source'] = "CfA4"

    try:
        SNe = vstack([SNeSpec, SNePhot, SNeCfA4])
    except:
        SNe = SNeSpec

    # Write out the result as a FITS table
    date = JLA.get_date()
    SNe.write('%s_%s.fits' % (options.output, date), format='fits')

    return
コード例 #6
0
def merge_lightcurve_fits(options):
    """Pythom program to merge the lightcurve fit results into a sigle format"""
    import numpy
    import astropy
    import os
    import JLA_library as JLA
    from astropy.table import Table, MaskedColumn, vstack
    from  scipy.optimize import leastsq

    params = JLA.build_dictionary(options.config)

    # ---------------- JLA ------------------------
    lightCurveFits = JLA.get_full_path(params['JLAlightCurveFits'])
    f=open(lightCurveFits)
    header=f.readlines()
    f.close()
    names=header[0].strip('#').split()

    # I imagine that the tables package in astropy could also be used to read the ascii input file
    SNeSpec = Table(numpy.genfromtxt(lightCurveFits,
                               skip_header=1,
                               dtype='S12,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8',
                               names=names))

    nSNeSpec=len(SNeSpec)
    print 'There are %d SNe from the spectrscopically confirmed sample' % (nSNeSpec)

    # Add an extra column to the table
    SNeSpec['source']=['JLA']*nSNeSpec

    # -------------- Malmquist bias fits
    malmBias={}

    if options.bias:
        # Compute the bias correction
        bias = numpy.genfromtxt(JLA.get_full_path(params['biasPolynomial']),
                                skip_header=3,
                                usecols=(0, 1, 2, 3),
                                dtype='S10,f8,f8,f8',
                                names=['sample', 'redshift', 'bias', 'e_bias'])

        for sample in numpy.unique(bias['sample']):
                selection=(bias['sample']==sample)
                guess=[0,0,0]
        
                plsq=leastsq(residuals, guess, args=(bias[selection]['bias'],
                                                     bias[selection]['redshift'],
                                                     bias[selection]['e_bias'],
                                                     'poly'), full_output=1)

                if plsq[4] in [1,2,3,4]:
                    print 'Solution for %s found' % (sample)
                    malmBias[sample]=plsq[0]


    # ---------------- Shuvo's sample aka JLA++  ------------------------
    # Photometrically identified SNe in Shuvo's sample, if the parameter exists
    if params['photLightCurveFits']!='None':
        lightCurveFits = JLA.get_full_path(params['photLightCurveFits'])
        SNePhot=Table.read(lightCurveFits, format='fits')
        nSNePhot=len(SNePhot)

        print 'There are %d SNe from the photometric sample' % (nSNePhot)

        # Converting from Shuvo's names to thosed used by JLA
        conversion={'name':'name_adj', 'zcmb':None, 'zhel':'z', 'dz':None, 'mb':'mb', 'dmb':'emb', 'x1':'x1', 'dx1':'ex1', 'color':'c', 'dcolor':'ec', '3rdvar':'col27', 'd3rdvar':'d3rdvar', 'tmax':None, 'dtmax':None, 'cov_m_s':'cov_m_x1', 'cov_m_c':'cov_m_c', 'cov_s_c':'cov_x1_c', 'set':None, 'ra':'col4', 'dec':'col5', 'biascor':None}

        # Add the uncertainty in the mass column
        SNePhot['d3rdvar']=(SNePhot['col29']+SNePhot['col28'])/2. - SNePhot['col27']

        # Remove columns that are not listed in conversion
    
        for colname in SNePhot.colnames:
            if colname not in conversion.values():
                SNePhot.remove_column(colname)
    
        for key in conversion.keys():
            # Rename the column if it does not already exist
            if conversion[key]!=None and conversion[key]!=key:
                SNePhot.rename_column(conversion[key], key)
            elif conversion[key]==None:
                # Create it, mask it, and fill all values
                SNePhot[key]=MaskedColumn(numpy.zeros(nSNePhot), numpy.ones(nSNePhot,bool))
                SNePhot[key].fill_value=-99 # does not work as expected, so we set it explicitly in the next line
                SNePhot[key]=-99.9
            else:
                # Do nothing if the column already exists
                pass

        # Compute the bias correction
        for i,SN in enumerate(SNePhot):
            if 'SDSS' in SN['name']:
                SNePhot['biascor'][i]=poly(SN['zhel'],malmBias['SDSS'])
            else:
                SNePhot['biascor'][i]=poly(SN['zhel'],malmBias['SNLS'])

        # Add the source column
        SNePhot['source']="Phot_Uddin"       

    # ----------------------  CfA4 ----------------------------------
    if params['CfA4LightCurveFits']!='None':
        lightCurveFits = JLA.get_full_path(params['CfA4LightCurveFits'])
        f=open(lightCurveFits)
        header=f.readlines()
        f.close()
        names=header[0].strip('#').split(',')    

        SNeCfA4=Table(numpy.genfromtxt(lightCurveFits,
                                       skip_header=1,
                                       dtype='S12,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8',
                                       names=names,delimiter=','))

        nSNeCfA4=len(SNeCfA4) 
    
        conversion={'name':'name', 'zcmb':None, 'zhel':'z', 'dz':None, 'mb':'mb', 'dmb':'emb', 'x1':'x1', 'dx1':'ex1', 'color':'c', 'dcolor':'ec', '3rdvar':None, 'd3rdvar':None, 'tmax':None, 'dtmax':None, 'cov_m_s':'cov_m_x1', 'cov_m_c':'cov_m_c', 'cov_s_c':'cov_x1_c', 'set':None, 'ra':None, 'dec':None, 'biascor':None}

        # Remove columns that are not listed in conversion
    
        for colname in SNeCfA4.colnames:
            if colname not in conversion.values():
                SNeCfA4.remove_column(colname)
    
        for key in conversion.keys():
            # Rename the column if it does not already exist
            if conversion[key]!=None and conversion[key]!=key:
                SNeCfA4.rename_column(conversion[key], key)
            elif conversion[key]==None:
                # Create it, mask it, and fill all values
                SNeCfA4[key]=MaskedColumn(numpy.zeros(nSNeCfA4), numpy.ones(nSNeCfA4,bool))
                SNeCfA4[key].fill_value=-99 # does not work as expected, so we set it explicitly in the next line
                SNeCfA4[key]=-99.9
            else:
                # Do nothing if the column already exists
                pass

        # Add the source column
        SNeCfA4['source']="CfA4"   

        # We also need to gather information on the host mass, the host mass uncertainty, CMB redshift and Malmquist bias
        CfA4lightcurves=[]
        CfA4_lcDirectories=params['CfA4MassesAndCMBz'].split(',')
        for lcDir in CfA4_lcDirectories:
            listing=os.listdir(JLA.get_full_path(lcDir))
            for lc in listing:
                CfA4lightcurves.append(JLA.get_full_path(lcDir)+lc)

        for i,SN in enumerate(SNeCfA4):
            for lc in CfA4lightcurves:
                if SN['name'][2:] in lc:
                   keywords=getKeywords(lc)
                   SNeCfA4[i]['zcmb']=keywords['REDSHIFT_CMB']
                   SNeCfA4[i]['3rdvar']=keywords['HOSTGAL_LOGMASS']
                   SNeCfA4[i]['d3rdvar']=keywords['e_HOSTGAL_LOGMASS']
                   SNeCfA4[i]['ra']=keywords['RA']
                   SNeCfA4[i]['dec']=keywords['DECL']
                   if SNeCfA4[i]['3rdvar'] < 0:
                       SNeCfA4[i]['3rdvar']=-99.9
                       SNeCfA4[i]['d3rdvar']=-99.9

        # Compute the bias correction
        SNeCfA4['biascor']=poly(SNeCfA4['zcmb'],malmBias['nearby'])

    try:
        SNe=vstack([SNeSpec,SNePhot,SNeCfA4])
    except:
        SNe=SNeSpec

#    print len(SNe),len(numpy.unique(SNe['name']))

    # Write out the result as a FITS table
    date = JLA.get_date()
    SNe.write('%s_%s.fits' % (options.output, date), format='fits', overwrite=True)

    return