コード例 #1
0
class Realsense:

    def __init__(
        self,
        element_name,
        transform_file_path,
        calibration_client_path,
        depth_shape,
        color_shape,
        fps,
        disparity_shift,
        depth_units,
        rotation,
        retry_delay
    ):
        self._transform_file_path = transform_file_path
        self._calibration_client_path = calibration_client_path
        self._depth_shape = depth_shape
        self._color_shape = color_shape
        self._fps = fps
        self.disparity_shift = disparity_shift
        self.depth_units = depth_units
        self._rotation = rotation
        self._retry_delay = retry_delay

        self._status_is_running = False
        self._status_lock = Lock()
        self._pipeline = rs.pipeline()
        self._rs_pc = rs.pointcloud()
        self._transform = TransformStreamContract(x=0, y=0, z=0, qx=0, qy=0, qz=0, qw=1)
        self._transform_last_loaded = 0

        # Create an align object: rs.align allows us to perform alignment of depth frames to other frames
        self._align = rs.align(rs.stream.color)

        # Init element
        self._element = Element(element_name)
        self._element.healthcheck_set(self.is_healthy)
        self._element.command_add(
            CalculateTransformCommand.COMMAND_NAME,
            self.run_transform_estimator,
            timeout=2000,
            deserialize=CalculateTransformCommand.Request.SERIALIZE
        )

        # Run command loop
        thread = Thread(target=self._element.command_loop, daemon=True)
        thread.start()

    def is_healthy(self):
        """
        Reports whether the realsense is connected and streaming or not
        """
        try:
            self._status_lock.acquire()
            if self._status_is_running:
                return Response(err_code=0, err_str="Realsense online")
            else:
                return Response(err_code=1, err_str="Waiting for realsense")
        finally:
            self._status_lock.release()

    def load_transform_from_file(self, fname):
        """
        Opens specified file, reads transform, and returns as list.

        Args:
            fname (str): CSV file that stores the transform
        """
        with open(fname, "r") as f:
            transform_list = [float(v) for v in f.readlines()[-1].split(",")]
            return TransformStreamContract(
                x=transform_list[0],
                y=transform_list[1],
                z=transform_list[2],
                qx=transform_list[3],
                qy=transform_list[4],
                qz=transform_list[5],
                qw=transform_list[6]
            )

    def run_transform_estimator(self, *args):
        """
        Runs the transform estimation procedure, which saves the transform to disk.
        """
        process = subprocess.Popen(self._calibration_client_path, stderr=subprocess.PIPE)
        out, err = process.communicate()
        return Response(
            data=CalculateTransformCommand.Response().to_data(),
            err_code=process.returncode,
            err_str=err.decode(),
            serialize=CalculateTransformCommand.Response.SERIALIZE
        )

    def run_camera_stream(self):
        while True:
            try:
                # Try to establish realsense connection
                self._element.log(LogLevel.INFO, "Attempting to connect to Realsense")

                # Set disparity shift
                device = rs.context().query_devices()[0]
                advnc_mode = rs.rs400_advanced_mode(device)
                depth_table_control_group = advnc_mode.get_depth_table()
                depth_table_control_group.disparityShift = self.disparity_shift
                advnc_mode.set_depth_table(depth_table_control_group)

                # Attempt to stream accel and gyro data, which requires d435i
                # If we can't then we revert to only streaming depth and color
                try:
                    config = rs.config()
                    config.enable_stream(
                        rs.stream.depth, self._depth_shape[0], self._depth_shape[1], rs.format.z16, self._fps
                    )
                    config.enable_stream(
                        rs.stream.color, self._color_shape[0], self._color_shape[1], rs.format.bgr8, self._fps
                    )
                    config.enable_stream(rs.stream.accel)
                    config.enable_stream(rs.stream.gyro)
                    profile = self._pipeline.start(config)
                    is_d435i = True
                except RuntimeError:
                    config = rs.config()
                    config.enable_stream(
                        rs.stream.depth, self._depth_shape[0], self._depth_shape[1], rs.format.z16, self._fps
                    )
                    config.enable_stream(
                        rs.stream.color, self._color_shape[0], self._color_shape[1], rs.format.bgr8, self._fps
                    )
                    profile = self._pipeline.start(config)
                    is_d435i = False

                # Set depth units
                depth_sensor = profile.get_device().first_depth_sensor()
                depth_sensor.set_option(rs.option.depth_units, self.depth_units)

                # Publish intrinsics
                rs_intrinsics = profile.get_stream(rs.stream.color).as_video_stream_profile().get_intrinsics()
                intrinsics = IntrinsicsStreamContract(
                    width=rs_intrinsics.width,
                    height=rs_intrinsics.height,
                    ppx=rs_intrinsics.ppx,
                    ppy=rs_intrinsics.ppy,
                    fx=rs_intrinsics.fx,
                    fy=rs_intrinsics.fy
                )
                self._element.entry_write(
                    IntrinsicsStreamContract.STREAM_NAME,
                    intrinsics.to_dict(),
                    serialize=IntrinsicsStreamContract.SERIALIZE,
                    maxlen=self._fps
                )

                try:
                    self._status_lock.acquire()
                    self._status_is_running = True
                finally:
                    self._status_lock.release()

                self._element.log(LogLevel.INFO, "Realsense connected and streaming")
                while True:
                    start_time = time.time()

                    frames = self._pipeline.wait_for_frames()
                    aligned_frames = self._align.process(frames)
                    depth_frame = aligned_frames.get_depth_frame()
                    color_frame = aligned_frames.get_color_frame()

                    # Validate that frames are valid
                    if not depth_frame or not color_frame:
                        continue

                    # Generate realsense pointcloud
                    self._rs_pc.map_to(color_frame)
                    points = self._rs_pc.calculate(depth_frame)

                    # Convert data to numpy arrays
                    depth_image = np.asanyarray(depth_frame.get_data())
                    color_image = np.asanyarray(color_frame.get_data())
                    vertices = np.asanyarray(points.get_vertices())

                    vertices = vertices.view(np.float32).reshape(vertices.shape + (-1,))

                    if self._rotation is not None:
                        depth_image = np.rot90(depth_image, k=self._rotation / 90)
                        color_image = np.rot90(color_image, k=self._rotation / 90)
                        # TODO: Apply rotation to pointcloud

                    _, color_serialized = cv2.imencode(".tif", color_image)
                    _, depth_serialized = cv2.imencode(".tif", depth_image)
                    _, pc_serialized = cv2.imencode(".tif", vertices)

                    if is_d435i:
                        accel = frames[2].as_motion_frame().get_motion_data()
                        gyro = frames[3].as_motion_frame().get_motion_data()
                        accel_data = AccelStreamContract(x=accel.x, y=accel.y, z=accel.z)
                        gyro_data = GyroStreamContract(x=gyro.x, y=gyro.y, z=gyro.z)
                        self._element.entry_write(
                            AccelStreamContract.STREAM_NAME,
                            accel_data.to_dict(),
                            serialize=AccelStreamContract.SERIALIZE,
                            maxlen=self._fps
                        )
                        self._element.entry_write(
                            GyroStreamContract.STREAM_NAME,
                            gyro_data.to_dict(),
                            serialize=GyroStreamContract.SERIALIZE,
                            maxlen=self._fps
                        )

                    color_contract = ColorStreamContract(data=color_serialized.tobytes())
                    depth_contract = DepthStreamContract(data=depth_serialized.tobytes())
                    pc_contract = PointCloudStreamContract(data=pc_serialized.tobytes())
                    self._element.entry_write(
                        ColorStreamContract.STREAM_NAME,
                        color_contract.to_dict(),
                        serialize=ColorStreamContract.SERIALIZE,
                        maxlen=self._fps
                    )
                    self._element.entry_write(
                        DepthStreamContract.STREAM_NAME,
                        depth_contract.to_dict(),
                        serialize=DepthStreamContract.SERIALIZE,
                        maxlen=self._fps
                    )
                    self._element.entry_write(
                        PointCloudStreamContract.STREAM_NAME,
                        pc_contract.to_dict(),
                        serialize=PointCloudStreamContract.SERIALIZE,
                        maxlen=self._fps
                    )

                    # Load transform from file if the file exists
                    # and has been modified since we last checked
                    if os.path.exists(self._transform_file_path):
                        transform_last_modified = os.stat(self._transform_file_path).st_mtime
                        if transform_last_modified > self._transform_last_loaded:
                            try:
                                self._transform = self.load_transform_from_file(self._transform_file_path)
                                self._transform_last_loaded = time.time()
                            except Exception as e:
                                self._element.log(LogLevel.ERR, str(e))
                    self._element.entry_write(
                        TransformStreamContract.STREAM_NAME,
                        self._transform.to_dict(),
                        serialize=TransformStreamContract.SERIALIZE,
                        maxlen=self._fps
                    )

                    time.sleep(max(1 / self._fps - (time.time() - start_time), 0))

            except:
                self._element.log(LogLevel.INFO, "Camera loop threw exception: %s" % (sys.exc_info()[1]))
            finally:
                # If camera fails to init or crashes, update status and retry connection
                try:
                    self._status_lock.acquire()
                    self._status_is_running = False
                finally:
                    self._status_lock.release()

                try:
                    self._pipeline.stop()
                except:
                    pass
                time.sleep(self._retry_delay)
コード例 #2
0
class Picamera:
    
    def __init__(self, element_name, width, height, fps, retry_delay):
        self._width = width
        self._height = height
        self._fps = fps
        self._retry_delay = retry_delay

        self._status_is_running = False
        self._status_lock = Lock()
        
        # Init element
        self._element = Element(element_name)
        self._element.healthcheck_set(self.is_healthy)
        #self._element.command_add(command_name, command_func_ptr, timeout, serialize)
        
        # Run command loop
        thread = Thread(target=self._element.command_loop, daemon=True)
        thread.start()
    
    def is_healthy(self):
        # Reports whether the camera is connected or not
        try:
           self._status_lock.acquire()
           if self._status_is_running:
               return Response(err_code=0, err_str="Camera is good")
           else:
               return Response(err_code=1, err_str="Camera is not good")
        except:
           return Response(err_code=0, err_str="Could not reach thread")

    def run_camera_stream(self):
        while True:
            try:
                # try to open up camera
                self._element.log(LogLevel.INFO, "Opening PiCamera")
                self._camera = PiCamera()
                self._color_array = PiRGBArray(self._camera)
                
                # set camera configs
                self._camera.resolution = (self._width, self._height)
                self._camera.framerate = self._fps
                
                # allow the camera to warm up
                time.sleep(.5)
                
                try:
                    self._status_lock.acquire()
                    self._status_is_running = True
                finally:
                    self._status_lock.release()
                
                self._element.log(LogLevel.INFO, "Picamera connected and streaming")
                
                while True:
                    start_time = time.time()
                    
                    self._camera.capture(self._color_array, format = 'bgr')
                    color_image = self._color_array.array
                    
                    #do some rotation here
                    
                    _, color_serialized = cv2.imencode(".tif", color_image)
                    
                    color_contract = ColorStreamContract(data=color_serialized.tobytes())
                    self._element.entry_write(
                            ColorStreamContract.STREAM_NAME,
                            color_contract.to_dict(),
                            serialize=ColorStreamContract.SERIALIZE,
                            maxlen=self._fps
                    )
                    time.sleep(max(1 / self._fps - (time.time() - start_time),0))
                    self._color_array.truncate(0)
            except:
                self._element.log(LogLevel.INFO, "Camera threw exception: %s" % (sys.exc_info()[1]))

            finally:
                try:
                    self._status_lock.acquire()
                    self._status_is_running = False
                    self._camera.close()
                finally: 
                    self._status_lock.release()

                time.sleep(self._retry_delay)
コード例 #3
0
                        timeout=50,
                        deserialize=True)
    # Transform takes no inputs, so there's nothing to deserialize
    element.command_add("transform", atombot.transform, timeout=50)

    # We create a thread and run the command loop which will constantly check for incoming commands from atom
    # We use a thread so we don't hang on the command_loop function because we will be performing other tasks
    thread = Thread(target=element.command_loop, daemon=True)
    thread.start()

    # This will block until every element in the list reports it is healthy. Useful if you depend on other elements.
    element.wait_for_elements_healthy(['atombot'])

    # Create an infinite loop that publishes the position of atombot to a stream as well as a visual of its position
    while True:
        # We write our position data and the visual of atombot's position to their respective streams
        # The maxlen parameter will determine how many entries atom stores
        # This data is serialized using msgpack
        element.entry_write("pos", {"data": atombot.get_pos()},
                            maxlen=10,
                            serialize=True)
        element.entry_write("pos_map", {"data": atombot.get_pos_map()},
                            maxlen=10,
                            serialize=True)
        # We can also choose to write binary data directly without serializing it
        element.entry_write("pos_binary", {"data": atombot.get_pos()},
                            maxlen=10)

        # Sleep so that we aren't consuming all of our CPU resources
        sleep(0.01)
コード例 #4
0
class SDMaskRCNNEvaluator:
    def __init__(self,
                 mode="both",
                 input_size=512,
                 scaling_factor=2,
                 config_path="sd-maskrcnn/cfg/benchmark.yaml"):
        self.element = Element("instance-segmentation")
        self.input_size = input_size
        self.scaling_factor = scaling_factor
        self.config_path = config_path
        self.mode = mode
        # Streaming of masks is disabled by default to prevent consumption of resources
        self.stream_enabled = False

        config = tf.ConfigProto()
        config.gpu_options.per_process_gpu_memory_fraction = 0.5
        config.gpu_options.visible_device_list = "0"
        set_session(tf.Session(config=config))

        self.set_mode(b"both")
        # Initiate tensorflow graph before running threads
        self.get_masks()
        self.element.command_add("segment", self.segment, 10000)
        self.element.command_add("get_mode", self.get_mode, 100)
        self.element.command_add("set_mode", self.set_mode, 10000)
        self.element.command_add("stream", self.set_stream, 100)
        t = Thread(target=self.element.command_loop, daemon=True)
        t.start()
        self.publish_segments()

    def get_mode(self, _):
        """
        Returns the current mode of the algorithm (both or depth).
        """
        return Response(self.mode)

    def set_mode(self, data):
        """
        Sets the mode of the algorithm and loads the corresponding weights.
        'both' means that the algorithm is considering grayscale and depth data.
        'depth' means that the algorithm only considers depth data.
        """
        mode = data.decode().strip().lower()
        if mode not in MODES:
            return Response(f"Invalid mode {mode}")
        self.mode = mode
        config = YamlConfig(self.config_path)
        inference_config = MaskConfig(config['model']['settings'])
        inference_config.GPU_COUNT = 1
        inference_config.IMAGES_PER_GPU = 1

        model_path = MODEL_PATHS[self.mode]
        model_dir, _ = os.path.split(model_path)
        self.model = modellib.MaskRCNN(mode=config['model']['mode'],
                                       config=inference_config,
                                       model_dir=model_dir)
        self.model.load_weights(model_path, by_name=True)
        self.element.log(LogLevel.INFO, f"Loaded weights from {model_path}")
        return Response(f"Mode switched to {self.mode}")

    def set_stream(self, data):
        """
        Sets streaming of segmented masks to true or false.
        """
        data = data.decode().strip().lower()
        if data == "true":
            self.stream_enabled = True
        elif data == "false":
            self.stream_enabled = False
        else:
            return Response(f"Expected bool, got {type(data)}.")
        return Response(f"Streaming set to {self.stream_enabled}")

    def inpaint(self, img, missing_value=0):
        """
        Fills the missing values of the depth data.
        """
        # cv2 inpainting doesn't handle the border properly
        # https://stackoverflow.com/questions/25974033/inpainting-depth-map-still-a-black-image-border
        img = cv2.copyMakeBorder(img, 1, 1, 1, 1, cv2.BORDER_DEFAULT)
        mask = (img == missing_value).astype(np.uint8)

        # Scale to keep as float, but has to be in bounds -1:1 to keep opencv happy.
        scale = np.abs(img).max()
        img = img.astype(
            np.float32) / scale  # Has to be float32, 64 not supported.
        img = cv2.inpaint(img, mask, 1, cv2.INPAINT_NS)

        # Back to original size and value range.
        img = img[1:-1, 1:-1]
        img = img * scale
        return img

    def normalize(self, img, max_dist=1000):
        """
        Scales the range of the data to be in 8-bit.
        Also shifts the values so that maximum is 255.
        """
        img = np.clip(img / max_dist, 0, 1) * 255
        img = np.clip(img + (255 - img.max()), 0, 255)
        return img.astype(np.uint8)

    def scale_and_square(self, img, scaling_factor, size):
        """
        Scales the image by scaling_factor and creates a border around the image to match size.
        Reducing the size of the image tends to improve the output of the model.
        """
        img = cv2.resize(img, (int(img.shape[1] / scaling_factor),
                               int(img.shape[0] / scaling_factor)),
                         interpolation=cv2.INTER_NEAREST)
        v_pad, h_pad = (size - img.shape[0]) // 2, (size - img.shape[1]) // 2
        img = cv2.copyMakeBorder(img, v_pad, v_pad, h_pad, h_pad,
                                 cv2.BORDER_REPLICATE)
        return img

    def unscale(self, results, scaling_factor, size):
        """
        Takes the results of the model and transforms them back into the original dimensions of the input image.
        """
        masks = results["masks"].astype(np.uint8)
        masks = cv2.resize(masks, (int(masks.shape[1] * scaling_factor),
                                   int(masks.shape[0] * scaling_factor)),
                           interpolation=cv2.INTER_NEAREST)
        v_pad, h_pad = (masks.shape[0] - size[0]) // 2, (masks.shape[1] -
                                                         size[1]) // 2
        masks = masks[v_pad:-v_pad, h_pad:-h_pad]

        rois = results["rois"] * scaling_factor
        for roi in rois:
            roi[0] = min(max(0, roi[0] - v_pad), size[0])
            roi[1] = min(max(0, roi[1] - h_pad), size[1])
            roi[2] = min(max(0, roi[2] - v_pad), size[0])
            roi[3] = min(max(0, roi[3] - h_pad), size[1])
        return masks, rois

    def publish_segments(self):
        """
        Publishes visualization of segmentation masks continuously.
        """
        self.colors = []

        for i in range(NUM_OF_COLORS):
            self.colors.append((np.random.rand(3) * 255).astype(int))

        while True:
            if not self.stream_enabled:
                time.sleep(1 / PUBLISH_RATE)
                continue

            start_time = time.time()
            scores, masks, rois, color_img = self.get_masks()
            masked_img = np.zeros(color_img.shape).astype("uint8")
            contour_img = np.zeros(color_img.shape).astype("uint8")

            if masks is not None and scores.size != 0:
                number_of_masks = masks.shape[-1]
                # Calculate the areas of masks
                mask_areas = []
                for i in range(number_of_masks):
                    width = np.abs(rois[i][0] - rois[i][2])
                    height = np.abs(rois[i][1] - rois[i][3])
                    mask_area = width * height
                    mask_areas.append(mask_area)

                np_mask_areas = np.array(mask_areas)
                mask_indices = np.argsort(np_mask_areas)
                # Add masks in the order of there areas.
                for i in mask_indices:
                    if (scores[i] > SEGMENT_SCORE):
                        indices = np.where(masks[:, :, i] == 1)
                        masked_img[indices[0], indices[1], :] = self.colors[i]

                # Smoothen masks
                masked_img = cv2.medianBlur(masked_img, 15)
                # find countours and draw boundaries.
                gray_image = cv2.cvtColor(masked_img, cv2.COLOR_BGR2GRAY)
                ret, thresh = cv2.threshold(gray_image, 50, 255,
                                            cv2.THRESH_BINARY)
                contours, hierarchy = cv2.findContours(thresh,
                                                       cv2.RETR_EXTERNAL,
                                                       cv2.CHAIN_APPROX_NONE)
                # Draw contours:
                for contour in contours:
                    area = cv2.contourArea(contour)
                    cv2.drawContours(contour_img, contour, -1, (255, 255, 255),
                                     5)

                masked_img = cv2.addWeighted(color_img, 0.6, masked_img, 0.4,
                                             0)
                masked_img = cv2.bitwise_or(masked_img, contour_img)

                _, color_serialized = cv2.imencode(".tif", masked_img)
                self.element.entry_write("color_mask",
                                         {"data": color_serialized.tobytes()},
                                         maxlen=30)

            time.sleep(max(0, (1 / PUBLISH_RATE) - (time.time() - start_time)))

    def get_masks(self):
        """
        Gets the latest data from the realsense, preprocesses it and returns the 
        segmentation masks, bounding boxes, and scores for each detected object.
        """
        color_data = self.element.entry_read_n("realsense", "color", 1)
        depth_data = self.element.entry_read_n("realsense", "depth", 1)
        try:
            color_data = color_data[0]["data"]
            depth_data = depth_data[0]["data"]
        except IndexError or KeyError:
            raise Exception(
                "Could not get data. Is the realsense element running?")

        depth_img = cv2.imdecode(np.frombuffer(depth_data, dtype=np.uint16),
                                 -1)
        original_size = depth_img.shape[:2]
        depth_img = self.scale_and_square(depth_img, self.scaling_factor,
                                          self.input_size)
        depth_img = self.inpaint(depth_img)
        depth_img = self.normalize(depth_img)

        if self.mode == "both":
            gray_img = cv2.imdecode(np.frombuffer(color_data, dtype=np.uint16),
                                    0)
            color_img = cv2.imdecode(
                np.frombuffer(color_data, dtype=np.uint16), 1)
            gray_img = self.scale_and_square(gray_img, self.scaling_factor,
                                             self.input_size)
            input_img = np.zeros((self.input_size, self.input_size, 3))
            input_img[..., 0] = gray_img
            input_img[..., 1] = depth_img
            input_img[..., 2] = depth_img
        else:
            input_img = np.stack((depth_img, ) * 3, axis=-1)

        # Get results and unscale
        results = self.model.detect([input_img], verbose=0)[0]
        masks, rois = self.unscale(results, self.scaling_factor, original_size)

        if masks.ndim < 2 or results["scores"].size == 0:
            masks = None
            results["scores"] = None
        elif masks.ndim == 2:
            masks = np.expand_dims(masks, axis=-1)

        return results["scores"], masks, rois, color_img

    def segment(self, _):
        """
        Command for getting the latest segmentation masks and returning the results.
        """
        scores, masks, rois, color_img = self.get_masks()
        # Encoded masks in TIF format and package everything in dictionary
        encoded_masks = []

        if masks is not None and scores is not None:
            for i in range(masks.shape[-1]):
                _, encoded_mask = cv2.imencode(".tif", masks[..., i])
                encoded_masks.append(encoded_mask.tobytes())
            response_data = {
                "rois": rois.tolist(),
                "scores": scores.tolist(),
                "masks": encoded_masks
            }

        else:
            response_data = {"rois": [], "scores": [], "masks": []}

        return Response(response_data, serialize=True)