class Realsense: def __init__( self, element_name, transform_file_path, calibration_client_path, depth_shape, color_shape, fps, disparity_shift, depth_units, rotation, retry_delay ): self._transform_file_path = transform_file_path self._calibration_client_path = calibration_client_path self._depth_shape = depth_shape self._color_shape = color_shape self._fps = fps self.disparity_shift = disparity_shift self.depth_units = depth_units self._rotation = rotation self._retry_delay = retry_delay self._status_is_running = False self._status_lock = Lock() self._pipeline = rs.pipeline() self._rs_pc = rs.pointcloud() self._transform = TransformStreamContract(x=0, y=0, z=0, qx=0, qy=0, qz=0, qw=1) self._transform_last_loaded = 0 # Create an align object: rs.align allows us to perform alignment of depth frames to other frames self._align = rs.align(rs.stream.color) # Init element self._element = Element(element_name) self._element.healthcheck_set(self.is_healthy) self._element.command_add( CalculateTransformCommand.COMMAND_NAME, self.run_transform_estimator, timeout=2000, deserialize=CalculateTransformCommand.Request.SERIALIZE ) # Run command loop thread = Thread(target=self._element.command_loop, daemon=True) thread.start() def is_healthy(self): """ Reports whether the realsense is connected and streaming or not """ try: self._status_lock.acquire() if self._status_is_running: return Response(err_code=0, err_str="Realsense online") else: return Response(err_code=1, err_str="Waiting for realsense") finally: self._status_lock.release() def load_transform_from_file(self, fname): """ Opens specified file, reads transform, and returns as list. Args: fname (str): CSV file that stores the transform """ with open(fname, "r") as f: transform_list = [float(v) for v in f.readlines()[-1].split(",")] return TransformStreamContract( x=transform_list[0], y=transform_list[1], z=transform_list[2], qx=transform_list[3], qy=transform_list[4], qz=transform_list[5], qw=transform_list[6] ) def run_transform_estimator(self, *args): """ Runs the transform estimation procedure, which saves the transform to disk. """ process = subprocess.Popen(self._calibration_client_path, stderr=subprocess.PIPE) out, err = process.communicate() return Response( data=CalculateTransformCommand.Response().to_data(), err_code=process.returncode, err_str=err.decode(), serialize=CalculateTransformCommand.Response.SERIALIZE ) def run_camera_stream(self): while True: try: # Try to establish realsense connection self._element.log(LogLevel.INFO, "Attempting to connect to Realsense") # Set disparity shift device = rs.context().query_devices()[0] advnc_mode = rs.rs400_advanced_mode(device) depth_table_control_group = advnc_mode.get_depth_table() depth_table_control_group.disparityShift = self.disparity_shift advnc_mode.set_depth_table(depth_table_control_group) # Attempt to stream accel and gyro data, which requires d435i # If we can't then we revert to only streaming depth and color try: config = rs.config() config.enable_stream( rs.stream.depth, self._depth_shape[0], self._depth_shape[1], rs.format.z16, self._fps ) config.enable_stream( rs.stream.color, self._color_shape[0], self._color_shape[1], rs.format.bgr8, self._fps ) config.enable_stream(rs.stream.accel) config.enable_stream(rs.stream.gyro) profile = self._pipeline.start(config) is_d435i = True except RuntimeError: config = rs.config() config.enable_stream( rs.stream.depth, self._depth_shape[0], self._depth_shape[1], rs.format.z16, self._fps ) config.enable_stream( rs.stream.color, self._color_shape[0], self._color_shape[1], rs.format.bgr8, self._fps ) profile = self._pipeline.start(config) is_d435i = False # Set depth units depth_sensor = profile.get_device().first_depth_sensor() depth_sensor.set_option(rs.option.depth_units, self.depth_units) # Publish intrinsics rs_intrinsics = profile.get_stream(rs.stream.color).as_video_stream_profile().get_intrinsics() intrinsics = IntrinsicsStreamContract( width=rs_intrinsics.width, height=rs_intrinsics.height, ppx=rs_intrinsics.ppx, ppy=rs_intrinsics.ppy, fx=rs_intrinsics.fx, fy=rs_intrinsics.fy ) self._element.entry_write( IntrinsicsStreamContract.STREAM_NAME, intrinsics.to_dict(), serialize=IntrinsicsStreamContract.SERIALIZE, maxlen=self._fps ) try: self._status_lock.acquire() self._status_is_running = True finally: self._status_lock.release() self._element.log(LogLevel.INFO, "Realsense connected and streaming") while True: start_time = time.time() frames = self._pipeline.wait_for_frames() aligned_frames = self._align.process(frames) depth_frame = aligned_frames.get_depth_frame() color_frame = aligned_frames.get_color_frame() # Validate that frames are valid if not depth_frame or not color_frame: continue # Generate realsense pointcloud self._rs_pc.map_to(color_frame) points = self._rs_pc.calculate(depth_frame) # Convert data to numpy arrays depth_image = np.asanyarray(depth_frame.get_data()) color_image = np.asanyarray(color_frame.get_data()) vertices = np.asanyarray(points.get_vertices()) vertices = vertices.view(np.float32).reshape(vertices.shape + (-1,)) if self._rotation is not None: depth_image = np.rot90(depth_image, k=self._rotation / 90) color_image = np.rot90(color_image, k=self._rotation / 90) # TODO: Apply rotation to pointcloud _, color_serialized = cv2.imencode(".tif", color_image) _, depth_serialized = cv2.imencode(".tif", depth_image) _, pc_serialized = cv2.imencode(".tif", vertices) if is_d435i: accel = frames[2].as_motion_frame().get_motion_data() gyro = frames[3].as_motion_frame().get_motion_data() accel_data = AccelStreamContract(x=accel.x, y=accel.y, z=accel.z) gyro_data = GyroStreamContract(x=gyro.x, y=gyro.y, z=gyro.z) self._element.entry_write( AccelStreamContract.STREAM_NAME, accel_data.to_dict(), serialize=AccelStreamContract.SERIALIZE, maxlen=self._fps ) self._element.entry_write( GyroStreamContract.STREAM_NAME, gyro_data.to_dict(), serialize=GyroStreamContract.SERIALIZE, maxlen=self._fps ) color_contract = ColorStreamContract(data=color_serialized.tobytes()) depth_contract = DepthStreamContract(data=depth_serialized.tobytes()) pc_contract = PointCloudStreamContract(data=pc_serialized.tobytes()) self._element.entry_write( ColorStreamContract.STREAM_NAME, color_contract.to_dict(), serialize=ColorStreamContract.SERIALIZE, maxlen=self._fps ) self._element.entry_write( DepthStreamContract.STREAM_NAME, depth_contract.to_dict(), serialize=DepthStreamContract.SERIALIZE, maxlen=self._fps ) self._element.entry_write( PointCloudStreamContract.STREAM_NAME, pc_contract.to_dict(), serialize=PointCloudStreamContract.SERIALIZE, maxlen=self._fps ) # Load transform from file if the file exists # and has been modified since we last checked if os.path.exists(self._transform_file_path): transform_last_modified = os.stat(self._transform_file_path).st_mtime if transform_last_modified > self._transform_last_loaded: try: self._transform = self.load_transform_from_file(self._transform_file_path) self._transform_last_loaded = time.time() except Exception as e: self._element.log(LogLevel.ERR, str(e)) self._element.entry_write( TransformStreamContract.STREAM_NAME, self._transform.to_dict(), serialize=TransformStreamContract.SERIALIZE, maxlen=self._fps ) time.sleep(max(1 / self._fps - (time.time() - start_time), 0)) except: self._element.log(LogLevel.INFO, "Camera loop threw exception: %s" % (sys.exc_info()[1])) finally: # If camera fails to init or crashes, update status and retry connection try: self._status_lock.acquire() self._status_is_running = False finally: self._status_lock.release() try: self._pipeline.stop() except: pass time.sleep(self._retry_delay)
class Picamera: def __init__(self, element_name, width, height, fps, retry_delay): self._width = width self._height = height self._fps = fps self._retry_delay = retry_delay self._status_is_running = False self._status_lock = Lock() # Init element self._element = Element(element_name) self._element.healthcheck_set(self.is_healthy) #self._element.command_add(command_name, command_func_ptr, timeout, serialize) # Run command loop thread = Thread(target=self._element.command_loop, daemon=True) thread.start() def is_healthy(self): # Reports whether the camera is connected or not try: self._status_lock.acquire() if self._status_is_running: return Response(err_code=0, err_str="Camera is good") else: return Response(err_code=1, err_str="Camera is not good") except: return Response(err_code=0, err_str="Could not reach thread") def run_camera_stream(self): while True: try: # try to open up camera self._element.log(LogLevel.INFO, "Opening PiCamera") self._camera = PiCamera() self._color_array = PiRGBArray(self._camera) # set camera configs self._camera.resolution = (self._width, self._height) self._camera.framerate = self._fps # allow the camera to warm up time.sleep(.5) try: self._status_lock.acquire() self._status_is_running = True finally: self._status_lock.release() self._element.log(LogLevel.INFO, "Picamera connected and streaming") while True: start_time = time.time() self._camera.capture(self._color_array, format = 'bgr') color_image = self._color_array.array #do some rotation here _, color_serialized = cv2.imencode(".tif", color_image) color_contract = ColorStreamContract(data=color_serialized.tobytes()) self._element.entry_write( ColorStreamContract.STREAM_NAME, color_contract.to_dict(), serialize=ColorStreamContract.SERIALIZE, maxlen=self._fps ) time.sleep(max(1 / self._fps - (time.time() - start_time),0)) self._color_array.truncate(0) except: self._element.log(LogLevel.INFO, "Camera threw exception: %s" % (sys.exc_info()[1])) finally: try: self._status_lock.acquire() self._status_is_running = False self._camera.close() finally: self._status_lock.release() time.sleep(self._retry_delay)
timeout=50, deserialize=True) # Transform takes no inputs, so there's nothing to deserialize element.command_add("transform", atombot.transform, timeout=50) # We create a thread and run the command loop which will constantly check for incoming commands from atom # We use a thread so we don't hang on the command_loop function because we will be performing other tasks thread = Thread(target=element.command_loop, daemon=True) thread.start() # This will block until every element in the list reports it is healthy. Useful if you depend on other elements. element.wait_for_elements_healthy(['atombot']) # Create an infinite loop that publishes the position of atombot to a stream as well as a visual of its position while True: # We write our position data and the visual of atombot's position to their respective streams # The maxlen parameter will determine how many entries atom stores # This data is serialized using msgpack element.entry_write("pos", {"data": atombot.get_pos()}, maxlen=10, serialize=True) element.entry_write("pos_map", {"data": atombot.get_pos_map()}, maxlen=10, serialize=True) # We can also choose to write binary data directly without serializing it element.entry_write("pos_binary", {"data": atombot.get_pos()}, maxlen=10) # Sleep so that we aren't consuming all of our CPU resources sleep(0.01)
class SDMaskRCNNEvaluator: def __init__(self, mode="both", input_size=512, scaling_factor=2, config_path="sd-maskrcnn/cfg/benchmark.yaml"): self.element = Element("instance-segmentation") self.input_size = input_size self.scaling_factor = scaling_factor self.config_path = config_path self.mode = mode # Streaming of masks is disabled by default to prevent consumption of resources self.stream_enabled = False config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.5 config.gpu_options.visible_device_list = "0" set_session(tf.Session(config=config)) self.set_mode(b"both") # Initiate tensorflow graph before running threads self.get_masks() self.element.command_add("segment", self.segment, 10000) self.element.command_add("get_mode", self.get_mode, 100) self.element.command_add("set_mode", self.set_mode, 10000) self.element.command_add("stream", self.set_stream, 100) t = Thread(target=self.element.command_loop, daemon=True) t.start() self.publish_segments() def get_mode(self, _): """ Returns the current mode of the algorithm (both or depth). """ return Response(self.mode) def set_mode(self, data): """ Sets the mode of the algorithm and loads the corresponding weights. 'both' means that the algorithm is considering grayscale and depth data. 'depth' means that the algorithm only considers depth data. """ mode = data.decode().strip().lower() if mode not in MODES: return Response(f"Invalid mode {mode}") self.mode = mode config = YamlConfig(self.config_path) inference_config = MaskConfig(config['model']['settings']) inference_config.GPU_COUNT = 1 inference_config.IMAGES_PER_GPU = 1 model_path = MODEL_PATHS[self.mode] model_dir, _ = os.path.split(model_path) self.model = modellib.MaskRCNN(mode=config['model']['mode'], config=inference_config, model_dir=model_dir) self.model.load_weights(model_path, by_name=True) self.element.log(LogLevel.INFO, f"Loaded weights from {model_path}") return Response(f"Mode switched to {self.mode}") def set_stream(self, data): """ Sets streaming of segmented masks to true or false. """ data = data.decode().strip().lower() if data == "true": self.stream_enabled = True elif data == "false": self.stream_enabled = False else: return Response(f"Expected bool, got {type(data)}.") return Response(f"Streaming set to {self.stream_enabled}") def inpaint(self, img, missing_value=0): """ Fills the missing values of the depth data. """ # cv2 inpainting doesn't handle the border properly # https://stackoverflow.com/questions/25974033/inpainting-depth-map-still-a-black-image-border img = cv2.copyMakeBorder(img, 1, 1, 1, 1, cv2.BORDER_DEFAULT) mask = (img == missing_value).astype(np.uint8) # Scale to keep as float, but has to be in bounds -1:1 to keep opencv happy. scale = np.abs(img).max() img = img.astype( np.float32) / scale # Has to be float32, 64 not supported. img = cv2.inpaint(img, mask, 1, cv2.INPAINT_NS) # Back to original size and value range. img = img[1:-1, 1:-1] img = img * scale return img def normalize(self, img, max_dist=1000): """ Scales the range of the data to be in 8-bit. Also shifts the values so that maximum is 255. """ img = np.clip(img / max_dist, 0, 1) * 255 img = np.clip(img + (255 - img.max()), 0, 255) return img.astype(np.uint8) def scale_and_square(self, img, scaling_factor, size): """ Scales the image by scaling_factor and creates a border around the image to match size. Reducing the size of the image tends to improve the output of the model. """ img = cv2.resize(img, (int(img.shape[1] / scaling_factor), int(img.shape[0] / scaling_factor)), interpolation=cv2.INTER_NEAREST) v_pad, h_pad = (size - img.shape[0]) // 2, (size - img.shape[1]) // 2 img = cv2.copyMakeBorder(img, v_pad, v_pad, h_pad, h_pad, cv2.BORDER_REPLICATE) return img def unscale(self, results, scaling_factor, size): """ Takes the results of the model and transforms them back into the original dimensions of the input image. """ masks = results["masks"].astype(np.uint8) masks = cv2.resize(masks, (int(masks.shape[1] * scaling_factor), int(masks.shape[0] * scaling_factor)), interpolation=cv2.INTER_NEAREST) v_pad, h_pad = (masks.shape[0] - size[0]) // 2, (masks.shape[1] - size[1]) // 2 masks = masks[v_pad:-v_pad, h_pad:-h_pad] rois = results["rois"] * scaling_factor for roi in rois: roi[0] = min(max(0, roi[0] - v_pad), size[0]) roi[1] = min(max(0, roi[1] - h_pad), size[1]) roi[2] = min(max(0, roi[2] - v_pad), size[0]) roi[3] = min(max(0, roi[3] - h_pad), size[1]) return masks, rois def publish_segments(self): """ Publishes visualization of segmentation masks continuously. """ self.colors = [] for i in range(NUM_OF_COLORS): self.colors.append((np.random.rand(3) * 255).astype(int)) while True: if not self.stream_enabled: time.sleep(1 / PUBLISH_RATE) continue start_time = time.time() scores, masks, rois, color_img = self.get_masks() masked_img = np.zeros(color_img.shape).astype("uint8") contour_img = np.zeros(color_img.shape).astype("uint8") if masks is not None and scores.size != 0: number_of_masks = masks.shape[-1] # Calculate the areas of masks mask_areas = [] for i in range(number_of_masks): width = np.abs(rois[i][0] - rois[i][2]) height = np.abs(rois[i][1] - rois[i][3]) mask_area = width * height mask_areas.append(mask_area) np_mask_areas = np.array(mask_areas) mask_indices = np.argsort(np_mask_areas) # Add masks in the order of there areas. for i in mask_indices: if (scores[i] > SEGMENT_SCORE): indices = np.where(masks[:, :, i] == 1) masked_img[indices[0], indices[1], :] = self.colors[i] # Smoothen masks masked_img = cv2.medianBlur(masked_img, 15) # find countours and draw boundaries. gray_image = cv2.cvtColor(masked_img, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(gray_image, 50, 255, cv2.THRESH_BINARY) contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) # Draw contours: for contour in contours: area = cv2.contourArea(contour) cv2.drawContours(contour_img, contour, -1, (255, 255, 255), 5) masked_img = cv2.addWeighted(color_img, 0.6, masked_img, 0.4, 0) masked_img = cv2.bitwise_or(masked_img, contour_img) _, color_serialized = cv2.imencode(".tif", masked_img) self.element.entry_write("color_mask", {"data": color_serialized.tobytes()}, maxlen=30) time.sleep(max(0, (1 / PUBLISH_RATE) - (time.time() - start_time))) def get_masks(self): """ Gets the latest data from the realsense, preprocesses it and returns the segmentation masks, bounding boxes, and scores for each detected object. """ color_data = self.element.entry_read_n("realsense", "color", 1) depth_data = self.element.entry_read_n("realsense", "depth", 1) try: color_data = color_data[0]["data"] depth_data = depth_data[0]["data"] except IndexError or KeyError: raise Exception( "Could not get data. Is the realsense element running?") depth_img = cv2.imdecode(np.frombuffer(depth_data, dtype=np.uint16), -1) original_size = depth_img.shape[:2] depth_img = self.scale_and_square(depth_img, self.scaling_factor, self.input_size) depth_img = self.inpaint(depth_img) depth_img = self.normalize(depth_img) if self.mode == "both": gray_img = cv2.imdecode(np.frombuffer(color_data, dtype=np.uint16), 0) color_img = cv2.imdecode( np.frombuffer(color_data, dtype=np.uint16), 1) gray_img = self.scale_and_square(gray_img, self.scaling_factor, self.input_size) input_img = np.zeros((self.input_size, self.input_size, 3)) input_img[..., 0] = gray_img input_img[..., 1] = depth_img input_img[..., 2] = depth_img else: input_img = np.stack((depth_img, ) * 3, axis=-1) # Get results and unscale results = self.model.detect([input_img], verbose=0)[0] masks, rois = self.unscale(results, self.scaling_factor, original_size) if masks.ndim < 2 or results["scores"].size == 0: masks = None results["scores"] = None elif masks.ndim == 2: masks = np.expand_dims(masks, axis=-1) return results["scores"], masks, rois, color_img def segment(self, _): """ Command for getting the latest segmentation masks and returning the results. """ scores, masks, rois, color_img = self.get_masks() # Encoded masks in TIF format and package everything in dictionary encoded_masks = [] if masks is not None and scores is not None: for i in range(masks.shape[-1]): _, encoded_mask = cv2.imencode(".tif", masks[..., i]) encoded_masks.append(encoded_mask.tobytes()) response_data = { "rois": rois.tolist(), "scores": scores.tolist(), "masks": encoded_masks } else: response_data = {"rois": [], "scores": [], "masks": []} return Response(response_data, serialize=True)