コード例 #1
0
ファイル: transform.py プロジェクト: woakesd/azure-cli
def add_transform_output(client,
                         account_name,
                         resource_group_name,
                         transform_name,
                         preset,
                         insights_to_extract=None,
                         video_analysis_mode=None,
                         audio_language=None,
                         audio_analysis_mode=None,
                         on_error=None,
                         relative_priority=None,
                         resolution=None,
                         face_detector_mode=None,
                         blur_type=None):

    transform = client.get(resource_group_name, account_name, transform_name)

    if not transform:
        show_resource_not_found_message(resource_group_name, account_name,
                                        'transforms', transform_name)

    transform.outputs.append(
        build_transform_output(preset, insights_to_extract,
                               video_analysis_mode, audio_language,
                               audio_analysis_mode, on_error,
                               relative_priority, resolution,
                               face_detector_mode, blur_type))

    parameters = Transform(outputs=transform.outputs)

    return client.create_or_update(resource_group_name, account_name,
                                   transform_name, parameters)
コード例 #2
0
ファイル: transform.py プロジェクト: woakesd/azure-cli
def create_transform(client,
                     account_name,
                     resource_group_name,
                     transform_name,
                     preset,
                     insights_to_extract=None,
                     video_analysis_mode=None,
                     audio_language=None,
                     audio_analysis_mode=None,
                     on_error=None,
                     relative_priority=None,
                     description=None,
                     resolution=None,
                     face_detector_mode=None,
                     blur_type=None):

    outputs = [
        build_transform_output(preset, insights_to_extract,
                               video_analysis_mode, audio_language,
                               audio_analysis_mode, on_error,
                               relative_priority, resolution,
                               face_detector_mode, blur_type)
    ]
    parameters = Transform(description=description, outputs=outputs)
    return client.create_or_update(resource_group_name, account_name,
                                   transform_name, parameters)
コード例 #3
0
ファイル: transform.py プロジェクト: avanigupta/azure-cli
def remove_transform_output(client, account_name, resource_group_name, transform_name, output_index):
    transform = client.get(resource_group_name, account_name, transform_name)

    try:
        transform.outputs.pop(output_index)
    except IndexError:
        raise CLIError("index {} doesn't exist on outputs".format(output_index))

    parameters = Transform(outputs=transform.outputs)
    return client.create_or_update(resource_group_name, account_name, transform_name, parameters)
コード例 #4
0
    audio_language=
    "en-US",  # Be sure to modify this to your desired language code in BCP-47 format
    insights_to_extract=
    "AllInsights",  # Video Analyzer can also run in Video only mode.
    mode=
    "Standard",  # Video analyzer can also process audio in basic or standard mode when using All Insights
    experimental_options=
    {  # Optional settings for preview or experimental features
        # "SpeechProfanityFilterMode="None" " # Disables the speech-to-text profanity filtering
    }))

# Ensure that you have customized transforms for the AudioAnalyzer. This is really a one time setup operation.
print("Creating Audio Analyzer transform...")

# Adding transform details
my_transform = Transform()
my_transform.description = "A simple Audio Analyzer Transform"
my_transform.outputs = [audio_transform_output]

print(f"Creating transform {audio_transform_name}")
transform = client.transforms.create_or_update(
    resource_group_name=resource_group,
    account_name=account_name,
    transform_name=audio_transform_name,
    parameters=my_transform)

print(f"{audio_transform_name} created (or updated if it existed already). ")

# Ensure that you have customized transforms for the VideoAnalyzer. This is really a one time setup operation.
print("Creating Video Analyzer transform...")
コード例 #5
0
transform_name = 'ContentAwareEncodingStreamFilesSample'

# Create a new Standard encoding Transform for Built-in Copy Codec
print(f"Creating Encoding transform named: {transform_name}")
# For this snippet, we are using 'BuiltInStandardEncoderPreset'
transform_output = TransformOutput(
    preset=BuiltInStandardEncoderPreset(preset_name="ContentAwareEncoding"),
    # What should we do with the job if there is an error?
    on_error=OnErrorType.STOP_PROCESSING_JOB,
    # What is the relative priority of this job to others? Normal, high or low?
    relative_priority=Priority.NORMAL)

print("Creating encoding transform...")

# Adding transform details
my_transform = Transform()
my_transform.description = "Transform with Stream Files"
my_transform.outputs = [transform_output]

print(f"Creating transform {transform_name}")
transform = client.transforms.create_or_update(
    resource_group_name=resource_group,
    account_name=account_name,
    transform_name=transform_name,
    parameters=my_transform)

print(f"{transform_name} created (or updated if it existed already). ")

job_name = 'StreamFilesSample' + uniqueness
print(f"Creating custom encoding job {job_name}")
files = (source_file)
コード例 #6
0
ファイル: transform.py プロジェクト: woakesd/azure-cli
def transform_update_setter(client, resource_group_name, account_name,
                            transform_name, parameters):
    parameters = Transform(outputs=parameters.outputs,
                           description=parameters.description)
    return client.create_or_update(resource_group_name, account_name,
                                   transform_name, parameters)