コード例 #1
0
    insights_to_extract=
    "AllInsights",  # Video Analyzer can also run in Video only mode.
    mode=
    "Standard",  # Video analyzer can also process audio in basic or standard mode when using All Insights
    experimental_options=
    {  # Optional settings for preview or experimental features
        # "SpeechProfanityFilterMode="None" " # Disables the speech-to-text profanity filtering
    }))

# Ensure that you have customized transforms for the AudioAnalyzer. This is really a one time setup operation.
print("Creating Audio Analyzer transform...")

# Adding transform details
my_transform = Transform()
my_transform.description = "A simple Audio Analyzer Transform"
my_transform.outputs = [audio_transform_output]

print(f"Creating transform {audio_transform_name}")
transform = client.transforms.create_or_update(
    resource_group_name=resource_group,
    account_name=account_name,
    transform_name=audio_transform_name,
    parameters=my_transform)

print(f"{audio_transform_name} created (or updated if it existed already). ")

# Ensure that you have customized transforms for the VideoAnalyzer. This is really a one time setup operation.
print("Creating Video Analyzer transform...")

# Adding transform details
my_transform2 = Transform()
コード例 #2
0
# Create a new Standard encoding Transform for Built-in Copy Codec
print(f"Creating Encoding transform named: {transform_name}")
# For this snippet, we are using 'BuiltInStandardEncoderPreset'
transform_output = TransformOutput(
    preset=BuiltInStandardEncoderPreset(preset_name="ContentAwareEncoding"),
    # What should we do with the job if there is an error?
    on_error=OnErrorType.STOP_PROCESSING_JOB,
    # What is the relative priority of this job to others? Normal, high or low?
    relative_priority=Priority.NORMAL)

print("Creating encoding transform...")

# Adding transform details
my_transform = Transform()
my_transform.description = "Transform with Stream Files"
my_transform.outputs = [transform_output]

print(f"Creating transform {transform_name}")
transform = client.transforms.create_or_update(
    resource_group_name=resource_group,
    account_name=account_name,
    transform_name=transform_name,
    parameters=my_transform)

print(f"{transform_name} created (or updated if it existed already). ")

job_name = 'StreamFilesSample' + uniqueness
print(f"Creating custom encoding job {job_name}")
files = (source_file)

# Create Job Input and Ouput Asset