コード例 #1
0
    def test_lane_change(self):
        # World Definition
        params = ParameterServer()
        world = World(params)

        # Model Definitions
        behavior_model = BehaviorMobil(params)
        execution_model = ExecutionModelInterpolate(params)
        dynamic_model = SingleTrackModel(params)

        behavior_model2 = BehaviorIDMLaneTracking(params)
        execution_model2 = ExecutionModelInterpolate(params)
        dynamic_model2 = SingleTrackModel(params)

        # Map Definition
        map_interface = MapInterface()
        xodr_map = MakeXodrMapOneRoadTwoLanes()
        map_interface.SetOpenDriveMap(xodr_map)
        world.SetMap(map_interface)

        #agent_2d_shape = CarLimousine()
        agent_2d_shape = CarRectangle()
        init_state = np.array([0, 3, -1.75, 0, 5])
        agent_params = params.AddChild("agent1")
        goal_polygon = Polygon2d(
            [1, 1, 0],
            [Point2d(0, 0),
             Point2d(0, 2),
             Point2d(2, 2),
             Point2d(2, 0)])
        goal_polygon = goal_polygon.Translate(Point2d(50, -2))

        agent = Agent(init_state, behavior_model, dynamic_model,
                      execution_model, agent_2d_shape, agent_params,
                      GoalDefinitionPolygon(goal_polygon), map_interface)
        world.AddAgent(agent)

        init_state2 = np.array([0, 15, -1.75, 0, 2])
        agent2 = Agent(init_state2, behavior_model2, dynamic_model2,
                       execution_model2, agent_2d_shape, agent_params,
                       GoalDefinitionPolygon(goal_polygon), map_interface)
        world.AddAgent(agent2)

        # viewer
        viewer = MPViewer(params=params, use_world_bounds=True)

        # World Simulation
        sim_step_time = params["simulation"]["step_time",
                                             "Step-time in simulation", 0.05]
        sim_real_time_factor = params["simulation"][
            "real_time_factor", "execution in real-time or faster", 100]

        # Draw map
        for _ in range(0, 10):
            viewer.clear()
            world.Step(sim_step_time)
            viewer.drawWorld(world)
            viewer.show(block=False)
            time.sleep(sim_step_time / sim_real_time_factor)
コード例 #2
0
    def test_one_agent_at_goal_state_limits(self):
        param_server = ParameterServer()
        # Model Definition
        behavior_model = BehaviorConstantVelocity(param_server)
        execution_model = ExecutionModelInterpolate(param_server)
        dynamic_model = SingleTrackModel(param_server)

        # Agent Definition
        agent_2d_shape = CarLimousine()
        init_state = np.array(
            [0, -191.789, -50.1725, 3.14 * 3.0 / 4.0, 150 / 3.6])
        agent_params = param_server.AddChild("agent1")
        goal_polygon = Polygon2d(
            [0, 0, 0],
            [Point2d(-1, -1),
             Point2d(-1, 1),
             Point2d(1, 1),
             Point2d(1, -1)])
        goal_polygon = goal_polygon.Translate(Point2d(-191.789, -50.1725))

        agent = Agent(
            init_state, behavior_model, dynamic_model, execution_model,
            agent_2d_shape, agent_params,
            GoalDefinitionStateLimits(
                goal_polygon,
                (3.14 * 3.0 / 4.0 - 0.08, 3.14 * 3.0 / 4.0 + 0.08)), None)

        world = World(param_server)
        world.AddAgent(agent)
        evaluator = EvaluatorGoalReached(agent.id)
        world.AddEvaluator("success", evaluator)

        info = world.Evaluate()
        self.assertEqual(info["success"], True)
コード例 #3
0
  def test_one_agent_at_goal_sequential(self):
    param_server = ParameterServer()
    # Model Definition
    dynamic_model = SingleTrackModel(param_server)
    behavior_model = BehaviorMPContinuousActions(param_server)
    idx = behavior_model.AddMotionPrimitive(np.array([1, 0]))
    behavior_model.ActionToBehavior(idx)
    execution_model = ExecutionModelInterpolate(param_server)


    # Agent Definition
    agent_2d_shape = CarLimousine()
    init_state = np.array([0, 0, 0, 0, 0])
    agent_params = param_server.AddChild("agent1")
    goal_frame = Polygon2d([0, 0, 0],
                             [Point2d(-1,-1),
                              Point2d(-1,1),
                              Point2d(1,1),
                              Point2d(1,-1)])

    goal_polygon1 = goal_frame.Translate(Point2d(10, 0))
    goal_polygon2 = goal_frame.Translate(Point2d(20, 0))
    goal_polygon3 = goal_frame.Translate(Point2d(30, 0))

    goal_def1 = GoalDefinitionStateLimits(goal_polygon1, [-0.08, 0.08])
    goal_def2 = GoalDefinitionStateLimits(goal_polygon2, [-0.08, 0.08])
    goal_def3 = GoalDefinitionStateLimits(goal_polygon3, [-0.08, 0.08])

    goal_definition = GoalDefinitionSequential([goal_def1,
                                                goal_def2,
                                                goal_def3])

    self.assertEqual(len(goal_definition.sequential_goals),3)
    agent = Agent(init_state,
                behavior_model,
                dynamic_model,
                execution_model,
                agent_2d_shape,
                agent_params,
                goal_definition,
                  None)

    world = World(param_server)
    world.AddAgent(agent)
    evaluator = EvaluatorGoalReached(agent.id)
    world.AddEvaluator("success", evaluator)

    # just drive with the single motion primitive should be successful 
    for _ in range(0,1000):
        world.Step(0.2)
        info = world.Evaluate()
        if info["success"]:
            break
    
    self.assertEqual(info["success"], True)
    self.assertAlmostEqual(agent.state[int(StateDefinition.X_POSITION)], 30, delta=0.5)
コード例 #4
0
 def _build_world_state(self):
     param_server = ParameterServer(json=self._json_params)
     world = World(param_server)
     if self._map_interface is None:
         world = self.setup_map(world, self._map_file_name)
     else:
         world.SetMap(self._map_interface)
     for agent in self._agent_list:
         agent.GenerateRoadCorridor(self._map_interface)
         world.AddAgent(agent)
     return world
コード例 #5
0
    def test_world(self):
        # create agent
        params = ParameterServer()
        behavior = BehaviorConstantVelocity(params)
        execution = ExecutionModelInterpolate(params)
        dynamic = SingleTrackModel(params)
        shape = Polygon2d([1.25, 1, 0], [
            Point2d(0, 0),
            Point2d(0, 2),
            Point2d(4, 2),
            Point2d(4, 0),
            Point2d(0, 0)
        ])
        init_state = np.array([0, 0, 0, 0, 5])
        agent = Agent(init_state, behavior, dynamic, execution, shape,
                      params.AddChild("agent"))
        road_map = OpenDriveMap()
        newXodrRoad = XodrRoad()
        newXodrRoad.id = 1
        newXodrRoad.name = "Autobahn A9"
        newPlanView = PlanView()
        newPlanView.AddLine(Point2d(0, 0), 1.57079632679, 10)
        newXodrRoad.plan_view = newPlanView
        line = newXodrRoad.plan_view.GetReferenceLine().ToArray()
        p = Point2d(line[-1][0], line[-1][1])
        newXodrRoad.plan_view.AddSpiral(p, 1.57079632679, 50.0, 0.0, 0.3, 0.4)
        line = newXodrRoad.plan_view.GetReferenceLine()
        lane_section = XodrLaneSection(0)
        lane = XodrLane()
        lane.line = line
        lane_section.AddLane(lane)
        newXodrRoad.AddLaneSection(lane_section)
        road_map.AddRoad(newXodrRoad)

        r = Roadgraph()
        map_interface = MapInterface()
        map_interface.SetOpenDriveMap(road_map)
        map_interface.SetRoadgraph(r)
        world = World(params)
        world.AddAgent(agent)
コード例 #6
0
    def test_evaluator_drivable_area(self):
        # World Definition
        params = ParameterServer()
        world = World(params)

        # Model Definitions
        behavior_model = BehaviorConstantVelocity(params)
        execution_model = ExecutionModelInterpolate(params)
        dynamic_model = SingleTrackModel(params)

        # Map Definition
        map_interface = MapInterface()
        xodr_map = MakeXodrMapOneRoadTwoLanes()
        map_interface.SetOpenDriveMap(xodr_map)
        world.SetMap(map_interface)
        #open_drive_map = world.map.GetOpenDriveMap()

        #agent_2d_shape = CarLimousine()
        agent_2d_shape = Polygon2d(
            [1.25, 1, 0],
            [Point2d(-1, -1),
             Point2d(-1, 1),
             Point2d(3, 1),
             Point2d(3, -1)])
        init_state = np.array([0, 3, -1.75, 0, 5])
        agent_params = params.AddChild("agent1")
        goal_polygon = Polygon2d(
            [1, 1, 0],
            [Point2d(0, 0),
             Point2d(0, 2),
             Point2d(2, 2),
             Point2d(2, 0)])
        goal_polygon = goal_polygon.Translate(Point2d(50, -2))

        agent = Agent(
            init_state,
            behavior_model,
            dynamic_model,
            execution_model,
            agent_2d_shape,
            agent_params,
            GoalDefinitionPolygon(goal_polygon),  # goal_lane_id
            map_interface)
        world.AddAgent(agent)

        evaluator = EvaluatorDrivableArea()
        world.AddEvaluator("drivable_area", evaluator)

        info = world.Evaluate()
        self.assertFalse(info["drivable_area"])

        viewer = MPViewer(params=params, use_world_bounds=True)

        # Draw map
        viewer.drawGoalDefinition(goal_polygon,
                                  color=(1, 0, 0),
                                  alpha=0.5,
                                  facecolor=(1, 0, 0))
        viewer.drawWorld(world)
        viewer.drawRoadCorridor(agent.road_corridor)
        viewer.show(block=False)
コード例 #7
0
    def test_one_agent_at_goal_state_limits_frenet(self):
        param_server = ParameterServer()
        # Model Definition
        behavior_model = BehaviorConstantVelocity(param_server)
        execution_model = ExecutionModelInterpolate(param_server)
        dynamic_model = SingleTrackModel(param_server)

        # Agent Definition
        agent_2d_shape = CarLimousine()
        agent_params = param_server.AddChild("agent1")

        center_line = Line2d()
        center_line.AddPoint(Point2d(5.0, 5.0))
        center_line.AddPoint(Point2d(10.0, 10.0))
        center_line.AddPoint(Point2d(20.0, 10.0))

        max_lateral_dist = (0.4, 1)
        max_orientation_diff = (0.08, 0.1)
        velocity_range = (20.0, 25.0)
        goal_definition = GoalDefinitionStateLimitsFrenet(
            center_line, max_lateral_dist, max_orientation_diff,
            velocity_range)

        # not at goal x,y, others yes
        agent1 = Agent(np.array([0, 6, 8, 3.14 / 4.0, velocity_range[0]]),
                       behavior_model, dynamic_model, execution_model,
                       agent_2d_shape, agent_params, goal_definition, None)

        # at goal x,y and others
        agent2 = Agent(np.array([0, 5.0, 5.5, 3.14 / 4.0, velocity_range[1]]),
                       behavior_model, dynamic_model, execution_model,
                       agent_2d_shape, agent_params, goal_definition, None)

        # not at goal x,y,v yes but not orientation
        agent3 = Agent(
            np.array(
                [0, 5, 5.5, 3.14 / 4.0 + max_orientation_diff[1] + 0.001,
                 20]), behavior_model, dynamic_model, execution_model,
            agent_2d_shape, agent_params, goal_definition, None)

        # not at goal x,y, orientation but not v
        agent4 = Agent(
            np.array([
                0, 5, 4.5, 3.14 / 4 - max_orientation_diff[0],
                velocity_range[0] - 0.01
            ]), behavior_model, dynamic_model, execution_model, agent_2d_shape,
            agent_params, goal_definition, None)

        # at goal x,y, at lateral limit
        agent5 = Agent(
            np.array([
                0, 15, 10 - max_lateral_dist[0] + 0.05, 0, velocity_range[1]
            ]), behavior_model, dynamic_model, execution_model, agent_2d_shape,
            agent_params, goal_definition, None)

        # not at goal x,y slightly out of lateral limit
        agent6 = Agent(
            np.array([
                0, 15, 10 + max_lateral_dist[0] + 0.05,
                3.14 / 4 + max_orientation_diff[0], velocity_range[0]
            ]), behavior_model, dynamic_model, execution_model, agent_2d_shape,
            agent_params, goal_definition, None)

        # not at goal x,y,v yes but not orientation
        agent7 = Agent(
            np.array(
                [0, 5, 5.5, 3.14 / 4.0 - max_orientation_diff[0] - 0.001,
                 20]), behavior_model, dynamic_model, execution_model,
            agent_2d_shape, agent_params, goal_definition, None)

        world = World(param_server)
        world.AddAgent(agent1)
        world.AddAgent(agent2)
        world.AddAgent(agent3)
        world.AddAgent(agent4)
        world.AddAgent(agent5)
        world.AddAgent(agent6)
        world.AddAgent(agent7)

        evaluator1 = EvaluatorGoalReached(agent1.id)
        evaluator2 = EvaluatorGoalReached(agent2.id)
        evaluator3 = EvaluatorGoalReached(agent3.id)
        evaluator4 = EvaluatorGoalReached(agent4.id)
        evaluator5 = EvaluatorGoalReached(agent5.id)
        evaluator6 = EvaluatorGoalReached(agent6.id)
        evaluator7 = EvaluatorGoalReached(agent7.id)
        world.AddEvaluator("success1", evaluator1)
        world.AddEvaluator("success2", evaluator2)
        world.AddEvaluator("success3", evaluator3)
        world.AddEvaluator("success4", evaluator4)
        world.AddEvaluator("success5", evaluator5)
        world.AddEvaluator("success6", evaluator6)
        world.AddEvaluator("success7", evaluator7)

        info = world.Evaluate()
        self.assertEqual(info["success1"], False)
        self.assertEqual(info["success2"], True)
        self.assertEqual(info["success3"], False)
        self.assertEqual(info["success4"], False)
        self.assertEqual(info["success5"], True)
        self.assertEqual(info["success6"], False)
        self.assertEqual(info["success7"], False)
コード例 #8
0
    [Point2d(-1, -1),
     Point2d(-1, 1),
     Point2d(1, 1),
     Point2d(1, -1)])
goal_polygon = goal_polygon.Translate(Point2d(-191.789, -50.1725))

agent = Agent(
    init_state,
    behavior_model,
    dynamic_model,
    execution_model,
    agent_2d_shape,
    agent_params,
    GoalDefinitionPolygon(goal_polygon),  # goal_lane_id
    map_interface)
world.AddAgent(agent)

# viewer
viewer = MPViewer(params=param_server, use_world_bounds=True)

# World Simulation
sim_step_time = param_server["simulation"]["step_time",
                                           "Step-time in simulation", 0.05]
sim_real_time_factor = param_server["simulation"][
    "real_time_factor", "execution in real-time or faster", 100]

for _ in range(0, 10):
    viewer.clear()
    world.Step(sim_step_time)
    viewer.drawWorld(world)
    viewer.drawRoadCorridor(agent.road_corridor)
コード例 #9
0
ファイル: py_system_tests.py プロジェクト: huangatlas/bark
    def test_python_behavior_model(self):
        # World Definition
        scenario_param_file = "macro_actions_test.json"  # must be within examples params folder
        params = ParameterServer(filename=os.path.join(
            "modules/world/tests/params/", scenario_param_file))

        world = World(params)

        # Define two behavior models one python one standard c++ model
        behavior_model = PythonDistanceBehavior(params)
        execution_model = ExecutionModelInterpolate(params)
        dynamic_model = SingleTrackModel(params)

        behavior_model2 = BehaviorConstantVelocity(params)
        execution_model2 = ExecutionModelInterpolate(params)
        dynamic_model2 = SingleTrackModel(params)

        # Define the map interface and load a testing map
        map_interface = MapInterface()
        xodr_map = MakeXodrMapOneRoadTwoLanes()
        map_interface.SetOpenDriveMap(xodr_map)
        world.SetMap(map_interface)

        # Define the agent shapes
        agent_2d_shape = CarRectangle()
        init_state = np.array([0, 3, -5.25, 0, 20])

        # Define the goal definition for agents
        center_line = Line2d()
        center_line.AddPoint(Point2d(0.0, -1.75))
        center_line.AddPoint(Point2d(100.0, -1.75))

        max_lateral_dist = (0.4, 0.5)
        max_orientation_diff = (0.08, 0.1)
        velocity_range = (5.0, 20.0)
        goal_definition = GoalDefinitionStateLimitsFrenet(
            center_line, max_lateral_dist, max_orientation_diff,
            velocity_range)

        # define two agents with the different behavior models
        agent_params = params.AddChild("agent1")
        agent = Agent(init_state, behavior_model, dynamic_model,
                      execution_model, agent_2d_shape, agent_params,
                      goal_definition, map_interface)
        world.AddAgent(agent)

        init_state2 = np.array([0, 25, -5.25, 0, 15])
        agent2 = Agent(init_state2, behavior_model2, dynamic_model2,
                       execution_model2, agent_2d_shape, agent_params,
                       goal_definition, map_interface)
        world.AddAgent(agent2)

        # viewer
        viewer = MPViewer(params=params, use_world_bounds=True)

        # World Simulation
        sim_step_time = params["simulation"]["step_time",
                                             "Step-time in simulation", 0.2]
        sim_real_time_factor = params["simulation"][
            "real_time_factor", "execution in real-time or faster", 1]

        # Draw map
        video_renderer = VideoRenderer(renderer=viewer,
                                       world_step_time=sim_step_time)

        for _ in range(0, 20):
            world.Step(sim_step_time)
            viewer.clear()
            video_renderer.drawWorld(world)
            video_renderer.drawGoalDefinition(goal_definition, "red", 0.5,
                                              "red")
            time.sleep(sim_step_time / sim_real_time_factor)

        video_renderer.export_video(filename="./test_video_intermediate",
                                    remove_image_dir=True)
コード例 #10
0
ファイル: py_system_tests.py プロジェクト: huangatlas/bark
    def test_uct_single_agent(self):
        try:
            from bark.models.behavior import BehaviorUCTSingleAgentMacroActions
        except:
            print("Rerun with --define planner_uct=true")
            return
        # World Definition
        scenario_param_file = "macro_actions_test.json"  # must be within examples params folder
        params = ParameterServer(filename=os.path.join(
            "modules/world/tests/params/", scenario_param_file))

        world = World(params)

        # Model Definitions
        behavior_model = BehaviorUCTSingleAgentMacroActions(params)
        execution_model = ExecutionModelInterpolate(params)
        dynamic_model = SingleTrackModel(params)

        behavior_model2 = BehaviorConstantVelocity(params)
        execution_model2 = ExecutionModelInterpolate(params)
        dynamic_model2 = SingleTrackModel(params)

        # Map Definition
        map_interface = MapInterface()
        xodr_map = MakeXodrMapOneRoadTwoLanes()
        map_interface.SetOpenDriveMap(xodr_map)
        world.SetMap(map_interface)

        # agent_2d_shape = CarLimousine()
        agent_2d_shape = CarRectangle()
        init_state = np.array([0, 3, -5.25, 0, 20])
        agent_params = params.AddChild("agent1")

        # goal_polygon = Polygon2d(
        #     [1, 1, 0], [Point2d(0, 0), Point2d(0, 2), Point2d(2, 2), Point2d(2, 0)])
        # goal_definition = GoalDefinitionPolygon(goal_polygon)
        # goal_polygon = goal_polygon.Translate(Point2d(90, -2))

        center_line = Line2d()
        center_line.AddPoint(Point2d(0.0, -1.75))
        center_line.AddPoint(Point2d(100.0, -1.75))

        max_lateral_dist = (0.4, 0.5)
        max_orientation_diff = (0.08, 0.1)
        velocity_range = (5.0, 20.0)
        goal_definition = GoalDefinitionStateLimitsFrenet(
            center_line, max_lateral_dist, max_orientation_diff,
            velocity_range)

        agent = Agent(init_state, behavior_model, dynamic_model,
                      execution_model, agent_2d_shape, agent_params,
                      goal_definition, map_interface)
        world.AddAgent(agent)

        init_state2 = np.array([0, 25, -5.25, 0, 0])
        agent2 = Agent(init_state2, behavior_model2, dynamic_model2,
                       execution_model2, agent_2d_shape, agent_params,
                       goal_definition, map_interface)
        world.AddAgent(agent2)

        # viewer
        viewer = MPViewer(params=params, use_world_bounds=True)

        # World Simulation
        sim_step_time = params["simulation"]["step_time",
                                             "Step-time in simulation", 0.2]
        sim_real_time_factor = params["simulation"][
            "real_time_factor", "execution in real-time or faster", 1]

        # Draw map
        video_renderer = VideoRenderer(renderer=viewer,
                                       world_step_time=sim_step_time)

        for _ in range(0, 5):
            world.Step(sim_step_time)
            viewer.clear()
            video_renderer.drawWorld(world)
            video_renderer.drawGoalDefinition(goal_definition)
            time.sleep(sim_step_time / sim_real_time_factor)

        video_renderer.export_video(filename="./test_video_intermediate",
                                    remove_image_dir=True)
コード例 #11
0
class Cosimulation:
    def __init__(self):
        self.carla_server = None
        self.carla_client = None
        self.carla_controller = None
        self.bark_viewer = None
        self.cosimulation_viewer = None
        self.launch_args = ["external/carla/CarlaUE4.sh", "-quality-level=Low"]

        # Bark parameter server
        self.param_server = ParameterServer(
            filename=BARK_PATH +
            "examples/params/od8_const_vel_one_agent.json")

        # World Definition
        self.bark_world = World(self.param_server)

        # Model Definitions
        self.behavior_model = BehaviorIDMClassic(self.param_server)
        self.execution_model = ExecutionModelInterpolate(self.param_server)
        self.dynamic_model = SingleTrackModel(self.param_server)

        # Map Definition
        xodr_parser = XodrParser(BARK_PATH + "modules/runtime/tests/data/" +
                                 BARK_MAP + ".xodr")
        self.map_interface = MapInterface()
        self.map_interface.SetOpenDriveMap(xodr_parser.map)
        self.bark_world.SetMap(self.map_interface)

        # Bark agent definition
        self.agent_2d_shape = CarLimousine()

        # use for converting carla actor id to bark agent id
        self.carla_2_bark_id = dict()
        # store the camera id attached to an agent
        self.carla_agents_cam = dict()

    def initialize_viewer(self):
        # Viewer of Bark simulation, the pygame surface will be extracted
        self.bark_viewer = PygameViewer(params=self.param_server,
                                        use_world_bounds=True,
                                        screen_dims=BARK_SCREEN_DIMS)

        # Viewer of cosimulation
        # Set the number of cameras to show both simulation side by side
        # windows from Bark simulation & camera image from Carla simulation
        self.cosimulation_viewer = CosimulationViewer(BARK_SCREEN_DIMS,
                                                      num_cameras=NUM_CAMERAS)

    def close(self):
        pg.display.quit()
        pg.quit()

        # kill the child of the subprocess
        # sometimes the socket is not killed, blocking the launch of carla
        # server
        os.system("fuser {}/tcp -k".format(CARLA_PORT))
        exit()

    def launch_carla_server(self):
        self.carla_server = subprocess.Popen(
            self.launch_args[0] if not CARLA_LOW_QUALITY else self.launch_args)
        # Wait for launching carla
        time.sleep(8)

    def connect_carla_server(self):
        """
        create a carla client and try connect to carla server
        """
        self.carla_client = CarlaClient()
        self.carla_client.connect(carla_map=CARLA_MAP,
                                  port=CARLA_PORT,
                                  timeout=10)
        self.carla_client.set_synchronous_mode(SYNCHRONOUS_MODE, DELTA_SECOND)
        self.carla_controller = Controller(self.carla_client)

    def spawn_npc_agents(self, num_agents):
        """spawn npc agents in both Carla and Bark

        Arguments:
            num_agents {int} -- number of agents to be spawned
        """

        for i in range(num_agents):
            carla_agent_id = self.carla_client.spawn_random_vehicle(
                num_retries=5)
            if carla_agent_id is not None:
                self.carla_client.set_autopilot(carla_agent_id, True)

                # spawn agent object in BARK
                agent_params = self.param_server.addChild("agent{}".format(i))
                bark_agent = Agent(
                    np.empty(5),
                    self.behavior_model,
                    self.dynamic_model,
                    self.execution_model,
                    self.agent_2d_shape,
                    agent_params,
                    None,  # goal_lane_id
                    self.map_interface)
                self.bark_world.AddAgent(bark_agent)
                self.carla_2_bark_id[carla_agent_id] = bark_agent.id

        if len(self.carla_2_bark_id) != num_agents:
            logging.warning(
                "Some agents cannot be spawned due to collision in the spawning location, {} agents are spawned"
                .format(len(self.carla_2_bark_id)))
        else:
            logging.info("{} agents spawned sucessfully.".format(num_agents))

    def initialize_camera_manager(self, surfaces):
        """create object for fetching image from carla

        Arguments:
            surfaces {list} -- list of pygame surfaces
        """
        self.cam_manager = CameraManager(surfaces,
                                         synchronous_mode=SYNCHRONOUS_MODE)

    def simulation_loop(self, carla_ego_id):
        bark_ego_id = self.carla_2_bark_id[carla_ego_id]

        self.bark_viewer.clear()
        self.cosimulation_viewer.tick()

        agent_state_map = self.carla_client.get_vehicles_state(
            self.carla_2_bark_id)
        self.bark_world.fillWorldFromCarla(0, agent_state_map)

        plan = self.bark_world.plan_agents(DELTA_SECOND,
                                           [bark_ego_id])[bark_ego_id]

        self.carla_controller.control(
            self.carla_client.get_actor(carla_ego_id), plan[-2][1:3],
            plan[-1][1:3], plan[-1][4], plan[-1][3])

        if SYNCHRONOUS_MODE:
            frame_id = self.carla_client.tick()
            self.cam_manager.fetch_image(frame_id)

        self.cosimulation_viewer.update_cameras(self.cam_manager.surfaces)

        # get agents' state in carla, and fill the state into bark
        carla_agent_states = self.carla_client.get_vehicles_state(
            self.carla_2_bark_id)
        self.bark_world.fillWorldFromCarla(DELTA_SECOND, carla_agent_states)

        self.bark_viewer.drawWorld(self.bark_world,
                                   show=False,
                                   eval_agent_ids=[bark_ego_id])
        self.cosimulation_viewer.update_bark(self.bark_viewer.screen_surface)

        self.cosimulation_viewer.show()
コード例 #12
0
# Agent Definition
agent_2d_shape = CarLimousine()
init_state = np.array([0, -15, -13, 3.14 * 3.0 / 4.0, 50 / 3.6])
goal_polygon = Polygon2d(
    [0, 0, 0],
    [Point2d(-1, -1),
     Point2d(-1, 1),
     Point2d(1, 1),
     Point2d(1, -1)])
goal_polygon = goal_polygon.Translate(Point2d(-63, -61))
agent_params = param_server.addChild("agent1")
agent1 = Agent(init_state, behavior_model, dynamic_model,
               execution_model, agent_2d_shape, agent_params,
               GoalDefinitionPolygon(goal_polygon), map_interface)
world.AddAgent(agent1)

agent_2d_shape2 = CarLimousine()
init_state2 = np.array([0, -15, -13, 3.14 * 3.0 / 4.0, 5.2])
agent_params2 = param_server.addChild("agent2")
agent2 = Agent(init_state2, behavior_model2, dynamic_model2, execution_model2,
               agent_2d_shape2, agent_params2,
               GoalDefinitionPolygon(goal_polygon), map_interface)
world.AddAgent(agent2)

# viewer
viewer = MPViewer(params=param_server, use_world_bounds=True)

# World Simulation
sim_step_time = param_server["simulation"]["step_time",
                                           "Step-time used in simulation", 1]