def test_lane_change(self): # World Definition params = ParameterServer() world = World(params) # Model Definitions behavior_model = BehaviorMobil(params) execution_model = ExecutionModelInterpolate(params) dynamic_model = SingleTrackModel(params) behavior_model2 = BehaviorIDMLaneTracking(params) execution_model2 = ExecutionModelInterpolate(params) dynamic_model2 = SingleTrackModel(params) # Map Definition map_interface = MapInterface() xodr_map = MakeXodrMapOneRoadTwoLanes() map_interface.SetOpenDriveMap(xodr_map) world.SetMap(map_interface) #agent_2d_shape = CarLimousine() agent_2d_shape = CarRectangle() init_state = np.array([0, 3, -1.75, 0, 5]) agent_params = params.AddChild("agent1") goal_polygon = Polygon2d( [1, 1, 0], [Point2d(0, 0), Point2d(0, 2), Point2d(2, 2), Point2d(2, 0)]) goal_polygon = goal_polygon.Translate(Point2d(50, -2)) agent = Agent(init_state, behavior_model, dynamic_model, execution_model, agent_2d_shape, agent_params, GoalDefinitionPolygon(goal_polygon), map_interface) world.AddAgent(agent) init_state2 = np.array([0, 15, -1.75, 0, 2]) agent2 = Agent(init_state2, behavior_model2, dynamic_model2, execution_model2, agent_2d_shape, agent_params, GoalDefinitionPolygon(goal_polygon), map_interface) world.AddAgent(agent2) # viewer viewer = MPViewer(params=params, use_world_bounds=True) # World Simulation sim_step_time = params["simulation"]["step_time", "Step-time in simulation", 0.05] sim_real_time_factor = params["simulation"][ "real_time_factor", "execution in real-time or faster", 100] # Draw map for _ in range(0, 10): viewer.clear() world.Step(sim_step_time) viewer.drawWorld(world) viewer.show(block=False) time.sleep(sim_step_time / sim_real_time_factor)
def test_one_agent_at_goal_state_limits(self): param_server = ParameterServer() # Model Definition behavior_model = BehaviorConstantVelocity(param_server) execution_model = ExecutionModelInterpolate(param_server) dynamic_model = SingleTrackModel(param_server) # Agent Definition agent_2d_shape = CarLimousine() init_state = np.array( [0, -191.789, -50.1725, 3.14 * 3.0 / 4.0, 150 / 3.6]) agent_params = param_server.AddChild("agent1") goal_polygon = Polygon2d( [0, 0, 0], [Point2d(-1, -1), Point2d(-1, 1), Point2d(1, 1), Point2d(1, -1)]) goal_polygon = goal_polygon.Translate(Point2d(-191.789, -50.1725)) agent = Agent( init_state, behavior_model, dynamic_model, execution_model, agent_2d_shape, agent_params, GoalDefinitionStateLimits( goal_polygon, (3.14 * 3.0 / 4.0 - 0.08, 3.14 * 3.0 / 4.0 + 0.08)), None) world = World(param_server) world.AddAgent(agent) evaluator = EvaluatorGoalReached(agent.id) world.AddEvaluator("success", evaluator) info = world.Evaluate() self.assertEqual(info["success"], True)
def test_one_agent_at_goal_sequential(self): param_server = ParameterServer() # Model Definition dynamic_model = SingleTrackModel(param_server) behavior_model = BehaviorMPContinuousActions(param_server) idx = behavior_model.AddMotionPrimitive(np.array([1, 0])) behavior_model.ActionToBehavior(idx) execution_model = ExecutionModelInterpolate(param_server) # Agent Definition agent_2d_shape = CarLimousine() init_state = np.array([0, 0, 0, 0, 0]) agent_params = param_server.AddChild("agent1") goal_frame = Polygon2d([0, 0, 0], [Point2d(-1,-1), Point2d(-1,1), Point2d(1,1), Point2d(1,-1)]) goal_polygon1 = goal_frame.Translate(Point2d(10, 0)) goal_polygon2 = goal_frame.Translate(Point2d(20, 0)) goal_polygon3 = goal_frame.Translate(Point2d(30, 0)) goal_def1 = GoalDefinitionStateLimits(goal_polygon1, [-0.08, 0.08]) goal_def2 = GoalDefinitionStateLimits(goal_polygon2, [-0.08, 0.08]) goal_def3 = GoalDefinitionStateLimits(goal_polygon3, [-0.08, 0.08]) goal_definition = GoalDefinitionSequential([goal_def1, goal_def2, goal_def3]) self.assertEqual(len(goal_definition.sequential_goals),3) agent = Agent(init_state, behavior_model, dynamic_model, execution_model, agent_2d_shape, agent_params, goal_definition, None) world = World(param_server) world.AddAgent(agent) evaluator = EvaluatorGoalReached(agent.id) world.AddEvaluator("success", evaluator) # just drive with the single motion primitive should be successful for _ in range(0,1000): world.Step(0.2) info = world.Evaluate() if info["success"]: break self.assertEqual(info["success"], True) self.assertAlmostEqual(agent.state[int(StateDefinition.X_POSITION)], 30, delta=0.5)
def _build_world_state(self): param_server = ParameterServer(json=self._json_params) world = World(param_server) if self._map_interface is None: world = self.setup_map(world, self._map_file_name) else: world.SetMap(self._map_interface) for agent in self._agent_list: agent.GenerateRoadCorridor(self._map_interface) world.AddAgent(agent) return world
def test_world(self): # create agent params = ParameterServer() behavior = BehaviorConstantVelocity(params) execution = ExecutionModelInterpolate(params) dynamic = SingleTrackModel(params) shape = Polygon2d([1.25, 1, 0], [ Point2d(0, 0), Point2d(0, 2), Point2d(4, 2), Point2d(4, 0), Point2d(0, 0) ]) init_state = np.array([0, 0, 0, 0, 5]) agent = Agent(init_state, behavior, dynamic, execution, shape, params.AddChild("agent")) road_map = OpenDriveMap() newXodrRoad = XodrRoad() newXodrRoad.id = 1 newXodrRoad.name = "Autobahn A9" newPlanView = PlanView() newPlanView.AddLine(Point2d(0, 0), 1.57079632679, 10) newXodrRoad.plan_view = newPlanView line = newXodrRoad.plan_view.GetReferenceLine().ToArray() p = Point2d(line[-1][0], line[-1][1]) newXodrRoad.plan_view.AddSpiral(p, 1.57079632679, 50.0, 0.0, 0.3, 0.4) line = newXodrRoad.plan_view.GetReferenceLine() lane_section = XodrLaneSection(0) lane = XodrLane() lane.line = line lane_section.AddLane(lane) newXodrRoad.AddLaneSection(lane_section) road_map.AddRoad(newXodrRoad) r = Roadgraph() map_interface = MapInterface() map_interface.SetOpenDriveMap(road_map) map_interface.SetRoadgraph(r) world = World(params) world.AddAgent(agent)
def test_evaluator_drivable_area(self): # World Definition params = ParameterServer() world = World(params) # Model Definitions behavior_model = BehaviorConstantVelocity(params) execution_model = ExecutionModelInterpolate(params) dynamic_model = SingleTrackModel(params) # Map Definition map_interface = MapInterface() xodr_map = MakeXodrMapOneRoadTwoLanes() map_interface.SetOpenDriveMap(xodr_map) world.SetMap(map_interface) #open_drive_map = world.map.GetOpenDriveMap() #agent_2d_shape = CarLimousine() agent_2d_shape = Polygon2d( [1.25, 1, 0], [Point2d(-1, -1), Point2d(-1, 1), Point2d(3, 1), Point2d(3, -1)]) init_state = np.array([0, 3, -1.75, 0, 5]) agent_params = params.AddChild("agent1") goal_polygon = Polygon2d( [1, 1, 0], [Point2d(0, 0), Point2d(0, 2), Point2d(2, 2), Point2d(2, 0)]) goal_polygon = goal_polygon.Translate(Point2d(50, -2)) agent = Agent( init_state, behavior_model, dynamic_model, execution_model, agent_2d_shape, agent_params, GoalDefinitionPolygon(goal_polygon), # goal_lane_id map_interface) world.AddAgent(agent) evaluator = EvaluatorDrivableArea() world.AddEvaluator("drivable_area", evaluator) info = world.Evaluate() self.assertFalse(info["drivable_area"]) viewer = MPViewer(params=params, use_world_bounds=True) # Draw map viewer.drawGoalDefinition(goal_polygon, color=(1, 0, 0), alpha=0.5, facecolor=(1, 0, 0)) viewer.drawWorld(world) viewer.drawRoadCorridor(agent.road_corridor) viewer.show(block=False)
def test_one_agent_at_goal_state_limits_frenet(self): param_server = ParameterServer() # Model Definition behavior_model = BehaviorConstantVelocity(param_server) execution_model = ExecutionModelInterpolate(param_server) dynamic_model = SingleTrackModel(param_server) # Agent Definition agent_2d_shape = CarLimousine() agent_params = param_server.AddChild("agent1") center_line = Line2d() center_line.AddPoint(Point2d(5.0, 5.0)) center_line.AddPoint(Point2d(10.0, 10.0)) center_line.AddPoint(Point2d(20.0, 10.0)) max_lateral_dist = (0.4, 1) max_orientation_diff = (0.08, 0.1) velocity_range = (20.0, 25.0) goal_definition = GoalDefinitionStateLimitsFrenet( center_line, max_lateral_dist, max_orientation_diff, velocity_range) # not at goal x,y, others yes agent1 = Agent(np.array([0, 6, 8, 3.14 / 4.0, velocity_range[0]]), behavior_model, dynamic_model, execution_model, agent_2d_shape, agent_params, goal_definition, None) # at goal x,y and others agent2 = Agent(np.array([0, 5.0, 5.5, 3.14 / 4.0, velocity_range[1]]), behavior_model, dynamic_model, execution_model, agent_2d_shape, agent_params, goal_definition, None) # not at goal x,y,v yes but not orientation agent3 = Agent( np.array( [0, 5, 5.5, 3.14 / 4.0 + max_orientation_diff[1] + 0.001, 20]), behavior_model, dynamic_model, execution_model, agent_2d_shape, agent_params, goal_definition, None) # not at goal x,y, orientation but not v agent4 = Agent( np.array([ 0, 5, 4.5, 3.14 / 4 - max_orientation_diff[0], velocity_range[0] - 0.01 ]), behavior_model, dynamic_model, execution_model, agent_2d_shape, agent_params, goal_definition, None) # at goal x,y, at lateral limit agent5 = Agent( np.array([ 0, 15, 10 - max_lateral_dist[0] + 0.05, 0, velocity_range[1] ]), behavior_model, dynamic_model, execution_model, agent_2d_shape, agent_params, goal_definition, None) # not at goal x,y slightly out of lateral limit agent6 = Agent( np.array([ 0, 15, 10 + max_lateral_dist[0] + 0.05, 3.14 / 4 + max_orientation_diff[0], velocity_range[0] ]), behavior_model, dynamic_model, execution_model, agent_2d_shape, agent_params, goal_definition, None) # not at goal x,y,v yes but not orientation agent7 = Agent( np.array( [0, 5, 5.5, 3.14 / 4.0 - max_orientation_diff[0] - 0.001, 20]), behavior_model, dynamic_model, execution_model, agent_2d_shape, agent_params, goal_definition, None) world = World(param_server) world.AddAgent(agent1) world.AddAgent(agent2) world.AddAgent(agent3) world.AddAgent(agent4) world.AddAgent(agent5) world.AddAgent(agent6) world.AddAgent(agent7) evaluator1 = EvaluatorGoalReached(agent1.id) evaluator2 = EvaluatorGoalReached(agent2.id) evaluator3 = EvaluatorGoalReached(agent3.id) evaluator4 = EvaluatorGoalReached(agent4.id) evaluator5 = EvaluatorGoalReached(agent5.id) evaluator6 = EvaluatorGoalReached(agent6.id) evaluator7 = EvaluatorGoalReached(agent7.id) world.AddEvaluator("success1", evaluator1) world.AddEvaluator("success2", evaluator2) world.AddEvaluator("success3", evaluator3) world.AddEvaluator("success4", evaluator4) world.AddEvaluator("success5", evaluator5) world.AddEvaluator("success6", evaluator6) world.AddEvaluator("success7", evaluator7) info = world.Evaluate() self.assertEqual(info["success1"], False) self.assertEqual(info["success2"], True) self.assertEqual(info["success3"], False) self.assertEqual(info["success4"], False) self.assertEqual(info["success5"], True) self.assertEqual(info["success6"], False) self.assertEqual(info["success7"], False)
[Point2d(-1, -1), Point2d(-1, 1), Point2d(1, 1), Point2d(1, -1)]) goal_polygon = goal_polygon.Translate(Point2d(-191.789, -50.1725)) agent = Agent( init_state, behavior_model, dynamic_model, execution_model, agent_2d_shape, agent_params, GoalDefinitionPolygon(goal_polygon), # goal_lane_id map_interface) world.AddAgent(agent) # viewer viewer = MPViewer(params=param_server, use_world_bounds=True) # World Simulation sim_step_time = param_server["simulation"]["step_time", "Step-time in simulation", 0.05] sim_real_time_factor = param_server["simulation"][ "real_time_factor", "execution in real-time or faster", 100] for _ in range(0, 10): viewer.clear() world.Step(sim_step_time) viewer.drawWorld(world) viewer.drawRoadCorridor(agent.road_corridor)
def test_python_behavior_model(self): # World Definition scenario_param_file = "macro_actions_test.json" # must be within examples params folder params = ParameterServer(filename=os.path.join( "modules/world/tests/params/", scenario_param_file)) world = World(params) # Define two behavior models one python one standard c++ model behavior_model = PythonDistanceBehavior(params) execution_model = ExecutionModelInterpolate(params) dynamic_model = SingleTrackModel(params) behavior_model2 = BehaviorConstantVelocity(params) execution_model2 = ExecutionModelInterpolate(params) dynamic_model2 = SingleTrackModel(params) # Define the map interface and load a testing map map_interface = MapInterface() xodr_map = MakeXodrMapOneRoadTwoLanes() map_interface.SetOpenDriveMap(xodr_map) world.SetMap(map_interface) # Define the agent shapes agent_2d_shape = CarRectangle() init_state = np.array([0, 3, -5.25, 0, 20]) # Define the goal definition for agents center_line = Line2d() center_line.AddPoint(Point2d(0.0, -1.75)) center_line.AddPoint(Point2d(100.0, -1.75)) max_lateral_dist = (0.4, 0.5) max_orientation_diff = (0.08, 0.1) velocity_range = (5.0, 20.0) goal_definition = GoalDefinitionStateLimitsFrenet( center_line, max_lateral_dist, max_orientation_diff, velocity_range) # define two agents with the different behavior models agent_params = params.AddChild("agent1") agent = Agent(init_state, behavior_model, dynamic_model, execution_model, agent_2d_shape, agent_params, goal_definition, map_interface) world.AddAgent(agent) init_state2 = np.array([0, 25, -5.25, 0, 15]) agent2 = Agent(init_state2, behavior_model2, dynamic_model2, execution_model2, agent_2d_shape, agent_params, goal_definition, map_interface) world.AddAgent(agent2) # viewer viewer = MPViewer(params=params, use_world_bounds=True) # World Simulation sim_step_time = params["simulation"]["step_time", "Step-time in simulation", 0.2] sim_real_time_factor = params["simulation"][ "real_time_factor", "execution in real-time or faster", 1] # Draw map video_renderer = VideoRenderer(renderer=viewer, world_step_time=sim_step_time) for _ in range(0, 20): world.Step(sim_step_time) viewer.clear() video_renderer.drawWorld(world) video_renderer.drawGoalDefinition(goal_definition, "red", 0.5, "red") time.sleep(sim_step_time / sim_real_time_factor) video_renderer.export_video(filename="./test_video_intermediate", remove_image_dir=True)
def test_uct_single_agent(self): try: from bark.models.behavior import BehaviorUCTSingleAgentMacroActions except: print("Rerun with --define planner_uct=true") return # World Definition scenario_param_file = "macro_actions_test.json" # must be within examples params folder params = ParameterServer(filename=os.path.join( "modules/world/tests/params/", scenario_param_file)) world = World(params) # Model Definitions behavior_model = BehaviorUCTSingleAgentMacroActions(params) execution_model = ExecutionModelInterpolate(params) dynamic_model = SingleTrackModel(params) behavior_model2 = BehaviorConstantVelocity(params) execution_model2 = ExecutionModelInterpolate(params) dynamic_model2 = SingleTrackModel(params) # Map Definition map_interface = MapInterface() xodr_map = MakeXodrMapOneRoadTwoLanes() map_interface.SetOpenDriveMap(xodr_map) world.SetMap(map_interface) # agent_2d_shape = CarLimousine() agent_2d_shape = CarRectangle() init_state = np.array([0, 3, -5.25, 0, 20]) agent_params = params.AddChild("agent1") # goal_polygon = Polygon2d( # [1, 1, 0], [Point2d(0, 0), Point2d(0, 2), Point2d(2, 2), Point2d(2, 0)]) # goal_definition = GoalDefinitionPolygon(goal_polygon) # goal_polygon = goal_polygon.Translate(Point2d(90, -2)) center_line = Line2d() center_line.AddPoint(Point2d(0.0, -1.75)) center_line.AddPoint(Point2d(100.0, -1.75)) max_lateral_dist = (0.4, 0.5) max_orientation_diff = (0.08, 0.1) velocity_range = (5.0, 20.0) goal_definition = GoalDefinitionStateLimitsFrenet( center_line, max_lateral_dist, max_orientation_diff, velocity_range) agent = Agent(init_state, behavior_model, dynamic_model, execution_model, agent_2d_shape, agent_params, goal_definition, map_interface) world.AddAgent(agent) init_state2 = np.array([0, 25, -5.25, 0, 0]) agent2 = Agent(init_state2, behavior_model2, dynamic_model2, execution_model2, agent_2d_shape, agent_params, goal_definition, map_interface) world.AddAgent(agent2) # viewer viewer = MPViewer(params=params, use_world_bounds=True) # World Simulation sim_step_time = params["simulation"]["step_time", "Step-time in simulation", 0.2] sim_real_time_factor = params["simulation"][ "real_time_factor", "execution in real-time or faster", 1] # Draw map video_renderer = VideoRenderer(renderer=viewer, world_step_time=sim_step_time) for _ in range(0, 5): world.Step(sim_step_time) viewer.clear() video_renderer.drawWorld(world) video_renderer.drawGoalDefinition(goal_definition) time.sleep(sim_step_time / sim_real_time_factor) video_renderer.export_video(filename="./test_video_intermediate", remove_image_dir=True)
class Cosimulation: def __init__(self): self.carla_server = None self.carla_client = None self.carla_controller = None self.bark_viewer = None self.cosimulation_viewer = None self.launch_args = ["external/carla/CarlaUE4.sh", "-quality-level=Low"] # Bark parameter server self.param_server = ParameterServer( filename=BARK_PATH + "examples/params/od8_const_vel_one_agent.json") # World Definition self.bark_world = World(self.param_server) # Model Definitions self.behavior_model = BehaviorIDMClassic(self.param_server) self.execution_model = ExecutionModelInterpolate(self.param_server) self.dynamic_model = SingleTrackModel(self.param_server) # Map Definition xodr_parser = XodrParser(BARK_PATH + "modules/runtime/tests/data/" + BARK_MAP + ".xodr") self.map_interface = MapInterface() self.map_interface.SetOpenDriveMap(xodr_parser.map) self.bark_world.SetMap(self.map_interface) # Bark agent definition self.agent_2d_shape = CarLimousine() # use for converting carla actor id to bark agent id self.carla_2_bark_id = dict() # store the camera id attached to an agent self.carla_agents_cam = dict() def initialize_viewer(self): # Viewer of Bark simulation, the pygame surface will be extracted self.bark_viewer = PygameViewer(params=self.param_server, use_world_bounds=True, screen_dims=BARK_SCREEN_DIMS) # Viewer of cosimulation # Set the number of cameras to show both simulation side by side # windows from Bark simulation & camera image from Carla simulation self.cosimulation_viewer = CosimulationViewer(BARK_SCREEN_DIMS, num_cameras=NUM_CAMERAS) def close(self): pg.display.quit() pg.quit() # kill the child of the subprocess # sometimes the socket is not killed, blocking the launch of carla # server os.system("fuser {}/tcp -k".format(CARLA_PORT)) exit() def launch_carla_server(self): self.carla_server = subprocess.Popen( self.launch_args[0] if not CARLA_LOW_QUALITY else self.launch_args) # Wait for launching carla time.sleep(8) def connect_carla_server(self): """ create a carla client and try connect to carla server """ self.carla_client = CarlaClient() self.carla_client.connect(carla_map=CARLA_MAP, port=CARLA_PORT, timeout=10) self.carla_client.set_synchronous_mode(SYNCHRONOUS_MODE, DELTA_SECOND) self.carla_controller = Controller(self.carla_client) def spawn_npc_agents(self, num_agents): """spawn npc agents in both Carla and Bark Arguments: num_agents {int} -- number of agents to be spawned """ for i in range(num_agents): carla_agent_id = self.carla_client.spawn_random_vehicle( num_retries=5) if carla_agent_id is not None: self.carla_client.set_autopilot(carla_agent_id, True) # spawn agent object in BARK agent_params = self.param_server.addChild("agent{}".format(i)) bark_agent = Agent( np.empty(5), self.behavior_model, self.dynamic_model, self.execution_model, self.agent_2d_shape, agent_params, None, # goal_lane_id self.map_interface) self.bark_world.AddAgent(bark_agent) self.carla_2_bark_id[carla_agent_id] = bark_agent.id if len(self.carla_2_bark_id) != num_agents: logging.warning( "Some agents cannot be spawned due to collision in the spawning location, {} agents are spawned" .format(len(self.carla_2_bark_id))) else: logging.info("{} agents spawned sucessfully.".format(num_agents)) def initialize_camera_manager(self, surfaces): """create object for fetching image from carla Arguments: surfaces {list} -- list of pygame surfaces """ self.cam_manager = CameraManager(surfaces, synchronous_mode=SYNCHRONOUS_MODE) def simulation_loop(self, carla_ego_id): bark_ego_id = self.carla_2_bark_id[carla_ego_id] self.bark_viewer.clear() self.cosimulation_viewer.tick() agent_state_map = self.carla_client.get_vehicles_state( self.carla_2_bark_id) self.bark_world.fillWorldFromCarla(0, agent_state_map) plan = self.bark_world.plan_agents(DELTA_SECOND, [bark_ego_id])[bark_ego_id] self.carla_controller.control( self.carla_client.get_actor(carla_ego_id), plan[-2][1:3], plan[-1][1:3], plan[-1][4], plan[-1][3]) if SYNCHRONOUS_MODE: frame_id = self.carla_client.tick() self.cam_manager.fetch_image(frame_id) self.cosimulation_viewer.update_cameras(self.cam_manager.surfaces) # get agents' state in carla, and fill the state into bark carla_agent_states = self.carla_client.get_vehicles_state( self.carla_2_bark_id) self.bark_world.fillWorldFromCarla(DELTA_SECOND, carla_agent_states) self.bark_viewer.drawWorld(self.bark_world, show=False, eval_agent_ids=[bark_ego_id]) self.cosimulation_viewer.update_bark(self.bark_viewer.screen_surface) self.cosimulation_viewer.show()
# Agent Definition agent_2d_shape = CarLimousine() init_state = np.array([0, -15, -13, 3.14 * 3.0 / 4.0, 50 / 3.6]) goal_polygon = Polygon2d( [0, 0, 0], [Point2d(-1, -1), Point2d(-1, 1), Point2d(1, 1), Point2d(1, -1)]) goal_polygon = goal_polygon.Translate(Point2d(-63, -61)) agent_params = param_server.addChild("agent1") agent1 = Agent(init_state, behavior_model, dynamic_model, execution_model, agent_2d_shape, agent_params, GoalDefinitionPolygon(goal_polygon), map_interface) world.AddAgent(agent1) agent_2d_shape2 = CarLimousine() init_state2 = np.array([0, -15, -13, 3.14 * 3.0 / 4.0, 5.2]) agent_params2 = param_server.addChild("agent2") agent2 = Agent(init_state2, behavior_model2, dynamic_model2, execution_model2, agent_2d_shape2, agent_params2, GoalDefinitionPolygon(goal_polygon), map_interface) world.AddAgent(agent2) # viewer viewer = MPViewer(params=param_server, use_world_bounds=True) # World Simulation sim_step_time = param_server["simulation"]["step_time", "Step-time used in simulation", 1]