コード例 #1
0
    def test_lane_change(self):
        # World Definition
        params = ParameterServer()
        world = World(params)

        # Model Definitions
        behavior_model = BehaviorMobil(params)
        execution_model = ExecutionModelInterpolate(params)
        dynamic_model = SingleTrackModel(params)

        behavior_model2 = BehaviorIDMLaneTracking(params)
        execution_model2 = ExecutionModelInterpolate(params)
        dynamic_model2 = SingleTrackModel(params)

        # Map Definition
        map_interface = MapInterface()
        xodr_map = MakeXodrMapOneRoadTwoLanes()
        map_interface.SetOpenDriveMap(xodr_map)
        world.SetMap(map_interface)

        #agent_2d_shape = CarLimousine()
        agent_2d_shape = CarRectangle()
        init_state = np.array([0, 3, -1.75, 0, 5])
        agent_params = params.AddChild("agent1")
        goal_polygon = Polygon2d(
            [1, 1, 0],
            [Point2d(0, 0),
             Point2d(0, 2),
             Point2d(2, 2),
             Point2d(2, 0)])
        goal_polygon = goal_polygon.Translate(Point2d(50, -2))

        agent = Agent(init_state, behavior_model, dynamic_model,
                      execution_model, agent_2d_shape, agent_params,
                      GoalDefinitionPolygon(goal_polygon), map_interface)
        world.AddAgent(agent)

        init_state2 = np.array([0, 15, -1.75, 0, 2])
        agent2 = Agent(init_state2, behavior_model2, dynamic_model2,
                       execution_model2, agent_2d_shape, agent_params,
                       GoalDefinitionPolygon(goal_polygon), map_interface)
        world.AddAgent(agent2)

        # viewer
        viewer = MPViewer(params=params, use_world_bounds=True)

        # World Simulation
        sim_step_time = params["simulation"]["step_time",
                                             "Step-time in simulation", 0.05]
        sim_real_time_factor = params["simulation"][
            "real_time_factor", "execution in real-time or faster", 100]

        # Draw map
        for _ in range(0, 10):
            viewer.clear()
            world.Step(sim_step_time)
            viewer.drawWorld(world)
            viewer.show(block=False)
            time.sleep(sim_step_time / sim_real_time_factor)
コード例 #2
0
  def test_one_agent_at_goal_sequential(self):
    param_server = ParameterServer()
    # Model Definition
    dynamic_model = SingleTrackModel(param_server)
    behavior_model = BehaviorMPContinuousActions(param_server)
    idx = behavior_model.AddMotionPrimitive(np.array([1, 0]))
    behavior_model.ActionToBehavior(idx)
    execution_model = ExecutionModelInterpolate(param_server)


    # Agent Definition
    agent_2d_shape = CarLimousine()
    init_state = np.array([0, 0, 0, 0, 0])
    agent_params = param_server.AddChild("agent1")
    goal_frame = Polygon2d([0, 0, 0],
                             [Point2d(-1,-1),
                              Point2d(-1,1),
                              Point2d(1,1),
                              Point2d(1,-1)])

    goal_polygon1 = goal_frame.Translate(Point2d(10, 0))
    goal_polygon2 = goal_frame.Translate(Point2d(20, 0))
    goal_polygon3 = goal_frame.Translate(Point2d(30, 0))

    goal_def1 = GoalDefinitionStateLimits(goal_polygon1, [-0.08, 0.08])
    goal_def2 = GoalDefinitionStateLimits(goal_polygon2, [-0.08, 0.08])
    goal_def3 = GoalDefinitionStateLimits(goal_polygon3, [-0.08, 0.08])

    goal_definition = GoalDefinitionSequential([goal_def1,
                                                goal_def2,
                                                goal_def3])

    self.assertEqual(len(goal_definition.sequential_goals),3)
    agent = Agent(init_state,
                behavior_model,
                dynamic_model,
                execution_model,
                agent_2d_shape,
                agent_params,
                goal_definition,
                  None)

    world = World(param_server)
    world.AddAgent(agent)
    evaluator = EvaluatorGoalReached(agent.id)
    world.AddEvaluator("success", evaluator)

    # just drive with the single motion primitive should be successful 
    for _ in range(0,1000):
        world.Step(0.2)
        info = world.Evaluate()
        if info["success"]:
            break
    
    self.assertEqual(info["success"], True)
    self.assertAlmostEqual(agent.state[int(StateDefinition.X_POSITION)], 30, delta=0.5)
コード例 #3
0
ファイル: py_system_tests.py プロジェクト: huangatlas/bark
    def test_python_behavior_model(self):
        # World Definition
        scenario_param_file = "macro_actions_test.json"  # must be within examples params folder
        params = ParameterServer(filename=os.path.join(
            "modules/world/tests/params/", scenario_param_file))

        world = World(params)

        # Define two behavior models one python one standard c++ model
        behavior_model = PythonDistanceBehavior(params)
        execution_model = ExecutionModelInterpolate(params)
        dynamic_model = SingleTrackModel(params)

        behavior_model2 = BehaviorConstantVelocity(params)
        execution_model2 = ExecutionModelInterpolate(params)
        dynamic_model2 = SingleTrackModel(params)

        # Define the map interface and load a testing map
        map_interface = MapInterface()
        xodr_map = MakeXodrMapOneRoadTwoLanes()
        map_interface.SetOpenDriveMap(xodr_map)
        world.SetMap(map_interface)

        # Define the agent shapes
        agent_2d_shape = CarRectangle()
        init_state = np.array([0, 3, -5.25, 0, 20])

        # Define the goal definition for agents
        center_line = Line2d()
        center_line.AddPoint(Point2d(0.0, -1.75))
        center_line.AddPoint(Point2d(100.0, -1.75))

        max_lateral_dist = (0.4, 0.5)
        max_orientation_diff = (0.08, 0.1)
        velocity_range = (5.0, 20.0)
        goal_definition = GoalDefinitionStateLimitsFrenet(
            center_line, max_lateral_dist, max_orientation_diff,
            velocity_range)

        # define two agents with the different behavior models
        agent_params = params.AddChild("agent1")
        agent = Agent(init_state, behavior_model, dynamic_model,
                      execution_model, agent_2d_shape, agent_params,
                      goal_definition, map_interface)
        world.AddAgent(agent)

        init_state2 = np.array([0, 25, -5.25, 0, 15])
        agent2 = Agent(init_state2, behavior_model2, dynamic_model2,
                       execution_model2, agent_2d_shape, agent_params,
                       goal_definition, map_interface)
        world.AddAgent(agent2)

        # viewer
        viewer = MPViewer(params=params, use_world_bounds=True)

        # World Simulation
        sim_step_time = params["simulation"]["step_time",
                                             "Step-time in simulation", 0.2]
        sim_real_time_factor = params["simulation"][
            "real_time_factor", "execution in real-time or faster", 1]

        # Draw map
        video_renderer = VideoRenderer(renderer=viewer,
                                       world_step_time=sim_step_time)

        for _ in range(0, 20):
            world.Step(sim_step_time)
            viewer.clear()
            video_renderer.drawWorld(world)
            video_renderer.drawGoalDefinition(goal_definition, "red", 0.5,
                                              "red")
            time.sleep(sim_step_time / sim_real_time_factor)

        video_renderer.export_video(filename="./test_video_intermediate",
                                    remove_image_dir=True)
コード例 #4
0
goal_polygon = goal_polygon.Translate(Point2d(-191.789, -50.1725))

agent = Agent(
    init_state,
    behavior_model,
    dynamic_model,
    execution_model,
    agent_2d_shape,
    agent_params,
    GoalDefinitionPolygon(goal_polygon),  # goal_lane_id
    map_interface)
world.AddAgent(agent)

# viewer
viewer = MPViewer(params=param_server, use_world_bounds=True)

# World Simulation
sim_step_time = param_server["simulation"]["step_time",
                                           "Step-time in simulation", 0.05]
sim_real_time_factor = param_server["simulation"][
    "real_time_factor", "execution in real-time or faster", 100]

for _ in range(0, 10):
    viewer.clear()
    world.Step(sim_step_time)
    viewer.drawWorld(world)
    viewer.drawRoadCorridor(agent.road_corridor)
    viewer.show(block=False)
    time.sleep(sim_step_time / sim_real_time_factor)

param_server.save("examples/params/od8_const_vel_one_agent_written.json")
コード例 #5
0
ファイル: py_system_tests.py プロジェクト: huangatlas/bark
    def test_uct_single_agent(self):
        try:
            from bark.models.behavior import BehaviorUCTSingleAgentMacroActions
        except:
            print("Rerun with --define planner_uct=true")
            return
        # World Definition
        scenario_param_file = "macro_actions_test.json"  # must be within examples params folder
        params = ParameterServer(filename=os.path.join(
            "modules/world/tests/params/", scenario_param_file))

        world = World(params)

        # Model Definitions
        behavior_model = BehaviorUCTSingleAgentMacroActions(params)
        execution_model = ExecutionModelInterpolate(params)
        dynamic_model = SingleTrackModel(params)

        behavior_model2 = BehaviorConstantVelocity(params)
        execution_model2 = ExecutionModelInterpolate(params)
        dynamic_model2 = SingleTrackModel(params)

        # Map Definition
        map_interface = MapInterface()
        xodr_map = MakeXodrMapOneRoadTwoLanes()
        map_interface.SetOpenDriveMap(xodr_map)
        world.SetMap(map_interface)

        # agent_2d_shape = CarLimousine()
        agent_2d_shape = CarRectangle()
        init_state = np.array([0, 3, -5.25, 0, 20])
        agent_params = params.AddChild("agent1")

        # goal_polygon = Polygon2d(
        #     [1, 1, 0], [Point2d(0, 0), Point2d(0, 2), Point2d(2, 2), Point2d(2, 0)])
        # goal_definition = GoalDefinitionPolygon(goal_polygon)
        # goal_polygon = goal_polygon.Translate(Point2d(90, -2))

        center_line = Line2d()
        center_line.AddPoint(Point2d(0.0, -1.75))
        center_line.AddPoint(Point2d(100.0, -1.75))

        max_lateral_dist = (0.4, 0.5)
        max_orientation_diff = (0.08, 0.1)
        velocity_range = (5.0, 20.0)
        goal_definition = GoalDefinitionStateLimitsFrenet(
            center_line, max_lateral_dist, max_orientation_diff,
            velocity_range)

        agent = Agent(init_state, behavior_model, dynamic_model,
                      execution_model, agent_2d_shape, agent_params,
                      goal_definition, map_interface)
        world.AddAgent(agent)

        init_state2 = np.array([0, 25, -5.25, 0, 0])
        agent2 = Agent(init_state2, behavior_model2, dynamic_model2,
                       execution_model2, agent_2d_shape, agent_params,
                       goal_definition, map_interface)
        world.AddAgent(agent2)

        # viewer
        viewer = MPViewer(params=params, use_world_bounds=True)

        # World Simulation
        sim_step_time = params["simulation"]["step_time",
                                             "Step-time in simulation", 0.2]
        sim_real_time_factor = params["simulation"][
            "real_time_factor", "execution in real-time or faster", 1]

        # Draw map
        video_renderer = VideoRenderer(renderer=viewer,
                                       world_step_time=sim_step_time)

        for _ in range(0, 5):
            world.Step(sim_step_time)
            viewer.clear()
            video_renderer.drawWorld(world)
            video_renderer.drawGoalDefinition(goal_definition)
            time.sleep(sim_step_time / sim_real_time_factor)

        video_renderer.export_video(filename="./test_video_intermediate",
                                    remove_image_dir=True)