コード例 #1
0
ファイル: rmhcslam.py プロジェクト: RoamingSpirit/SLAM
    def __init__(self, laser, map_size_pixels, map_size_meters,
                 map_quality=_DEFAULT_MAP_QUALITY, hole_width_mm=_DEFAULT_HOLE_WIDTH_MM,
                 random_seed=None, sigma_xy_mm=_DEFAULT_SIGMA_XY_MM, sigma_theta_degrees=_DEFAULT_SIGMA_THETA_DEGREES,
                 max_search_iter=_DEFAULT_MAX_SEARCH_ITER):

        self.myfilter = FilterHandler(standardGH(g, h, 20000, 0), standardGH(g, h, 20000, 0), standardGH(g, h))

        RMHC_SLAM.__init__(self, laser, map_size_pixels, map_size_meters,
                           map_quality, hole_width_mm,
                           random_seed, sigma_xy_mm, sigma_theta_degrees,
                           max_search_iter)
コード例 #2
0
    def __init__(self, laser, MAP_SIZE_M=4.0, MAP_RES_PIX_PER_M=100, MAP_DEPTH=5, HOLE_WIDTH_MM = 200, RANDOM_SEED = 0xabcd,  **unused):
        MAP_SIZE_PIXELS = int(MAP_SIZE_M*MAP_RES_PIX_PER_M) # number of pixels across the entire map
        RMHC_SLAM.__init__(self, \
                       laser, \
                       MAP_SIZE_PIXELS, \
                       MAP_SIZE_M, \
                       MAP_DEPTH, \
                       HOLE_WIDTH_MM, \
                       RANDOM_SEED)

        self.scanSize = laser.SCAN_SIZE
        self.breezyMap = bytearray(MAP_SIZE_PIXELS**2) # initialize map array for BreezySLAM's internal mapping
コード例 #3
0
 def __init__(self):
     Thread.__init__(self)
     #self.lidar = Lidar(LIDAR_DEVICE)
     self.slam = RMHC_SLAM(LaserModel(), MAP_SIZE_PIXELS, MAP_SIZE_METERS, map_quality=50, hole_width_mm=200, max_search_iter=10000)
     self.N = 0
     self.bot_pos = [[1500, 1300]]
     self.bot_ori = [0]
     self.state = True
コード例 #4
0
  def __init__(self, robot, laser, logFile=None, MAP_SIZE_M=8.0, MAP_RES_PIX_PER_M=100, USE_ODOMETRY=True, MAP_QUALITY=5, **unused):
    self.USE_ODOMETRY = USE_ODOMETRY
    MAP_SIZE_PIXELS = int(MAP_SIZE_M*MAP_RES_PIX_PER_M) # number of pixels across the entire map
    RMHC_SLAM.__init__(self, \
                       laser, \
                       MAP_SIZE_PIXELS, \
                       MAP_SIZE_M, \
                       MAP_QUALITY, \
                       HOLE_WIDTH_MM, \
                       RANDOM_SEED)

    self.robot = robot
    self.scanSize = laser.SCAN_SIZE
    self.logFile = logFile

    self.prevEncPos = () # robot encoder data
    self.currEncPos = () # left wheel [ticks], right wheel [ticks], timestamp [ms]

    self.breezyMap = bytearray(MAP_SIZE_PIXELS**2) # initialize map array for BreezySLAM's internal mapping
コード例 #5
0
ファイル: rmhcslam.py プロジェクト: RoamingSpirit/SLAM
 def update(self, scan_mm, velocities=None, command=0):
     """
     Calculates the amount of usefull pixels perframe and stores the time.
     scan_mm: new scan
     velocities: velocitie data
     command: next to perform command
     :param velocities:
     :param command:
     :param scan_mm:
     """
     errors = 0
     self.values = len(scan_mm)
     for x in range(0, len(scan_mm)):
         if scan_mm[x] == 0:
             errors += 1 
     self.error = float(errors) / len(scan_mm)
     if velocities == None:
         self.time = None
     else:
         self.time = velocities[2]
     self.command = command
     RMHC_SLAM.update(self, scan_mm, velocities)
コード例 #6
0
ファイル: rmhcslam.py プロジェクト: RoamingSpirit/SLAM
 def _getNewPosition(self, start_position):
     """
     Filters the rmhc slam result.
     start_position: estimated position based on odometry
     """
     # RMHC search is implemented as a C extension for efficiency
     slam_position = RMHC_SLAM._getNewPosition(self, start_position)
     
     #check slam values for reliable turn.
     #vtheta = (slam_position.theta_degrees - start_position.theta_degrees)/self.time
     #if(math.fabs(vtheta) > MAX_DEGREE_PER_S):
     #    vtheta = vtheta/math.fabs(vtheta) * MAX_DEGREE_PER_S
     #    slam_position.theta_degrees = start_position.theta_degrees + vtheta * self.time
     
     
     if not filtering: return slam_position
     if self.time == None:
         return slam_position
     return self.myfilter(slam_position, start_position, self.error, self.time, self.command)
コード例 #7
0
ファイル: SlamIO.py プロジェクト: most-nbperson/Mecanum
class SLAM_Engine:
    def __init__(self, size_pixels, size_meters):
        self.map_size_pixels = size_pixels
        self.map_size_meters = size_meters
        self.map_scale_meters_per_pixel = float(size_meters) / float(
            size_pixels)
        self.mapbytes = bytearray(self.map_size_pixels * self.map_size_pixels)
        self.robot = None
        self.control = False
        self.lidarShow = True
        self.routine = False
        #slam算法初始化
        self.slam = RMHC_SLAM(MinesLaser(),
                              self.map_size_pixels,
                              self.map_size_meters,
                              map_quality=_DEFAULT_MAP_QUALITY,
                              hole_width_mm=_DEFAULT_HOLE_WIDTH_MM,
                              random_seed=999,
                              sigma_xy_mm=_DEFAULT_SIGMA_XY_MM,
                              sigma_theta_degrees=_DEFAULT_SIGMA_THETA_DEGREES,
                              max_search_iter=_DEFAULT_MAX_SEARCH_ITER)

        self.map_view = OpenMap(self.map_size_pixels, self.map_size_meters)
        self.pose = [0, 0, 0]

    def set_auto_control(self):
        self.control = True

    def reset_auto_control(self):
        self.control = False
        self.map_view.path = []
        self.map_view.point_list = []

    def data_test(self, dataset='expX'):
        timestamps, lidars, odometries = load_data_EAI('.', dataset)
        for scanno in range(len(lidars)):
            self.slam_run(lidars[scanno])
            self.slam_view()

    def NoLidarInit(self, dataset='expX'):
        self.timestamps, self.lidars, self.odometries = load_data_EAI(
            '.', dataset)
        self.SLAM_continue = False

    def NoLidarGetScans(self):
        scans_m = []
        if len(self.lidars) > 1:
            scans = self.lidars.pop(0)

            for scan in scans:
                scans_m.append(float(scan) / 1000.0)
            return scans, scans_m
        else:
            scans = self.lidars[0]
            for scan in scans:
                scans_m.append(float(scan) / 1000.0)
            return scans, scans_m

    def routine_switch(self):
        self.map_view.path = self.map_view.routinePath.copy()
        self.map_view.routinePath.reverse()
        self.map_view.END_flag = False

    def slam_control(self):
        if self.control == True:
            return self.map_view.track_control()
        else:
            return

    def slam_run(self, scans):

        self.slam.update(scans)  #地图更新
        self.pose[0], self.pose[1], self.pose[2] = self.slam.getpos()  #位置预测
        self.slam.getmap(self.mapbytes)  #地图读取
        self.map_view.setPose(self.pose[0] / 1000., self.pose[1] / 1000.,
                              self.pose[2])

    def slam_view(self):
        self.map_view.display(self.pose[0] / 1000.,
                              self.pose[1] / 1000.,
                              self.pose[2],
                              self.mapbytes,
                              test=False)

    def slam_mjpg(self):
        s = self.map_scale_meters_per_pixel
        self.map_view.display_mjpg(self.pose[0] / 1000.,
                                   self.pose[1] / 1000.,
                                   self.pose[2],
                                   self.mapbytes,
                                   test=False)
        pos = [
            self.map_size_pixels - int((self.pose[0] / 1000.) / s),
            int((self.pose[1] / 1000.) / s), self.pose[2]
        ]
        return self.map_view.get_jpg(), pos

    def setPoint(self, x, y):
        return self.map_view.setPoint(self.map_size_pixels - x, y)

    def _m2pix(self, x_m, y_m):
        s = self.map_scale_meters_per_pixel
        #p = self.map_size_pixels
        return int(x_m / s), int(y_m / s)

    def draw_history(self):
        self.map_view.get_history_pose()

    def del_history(self):
        self.map_view.del_history_pose()
コード例 #8
0
class Map(Thread):

    MAP_SIZE_PIXELS         = 1000
    MAP_SIZE_METERS         = 7
    LIDAR_DEVICE            = '/dev/ttyACM0'
    THRESH_DETECTION = 100

    RAW_ANGLE = np.pi/4
    LIDAR_POS = np.array([140,140])



    def __init__(self):
        Thread.__init__(self)
        #self.lidar = Lidar(LIDAR_DEVICE)
        self.slam = RMHC_SLAM(LaserModel(), MAP_SIZE_PIXELS, MAP_SIZE_METERS, map_quality=50, hole_width_mm=200, max_search_iter=10000)
        self.N = 0
        self.bot_pos = [[1500, 1300]]
        self.bot_ori = [0]
        self.state = True

    def run(self):
        self.i = 0
        x_th = 1500
        y_th = 1300

        while(self.state):
            if(self.i<10):
                y_th +=35
            elif(self.i<33):
                x_th -= 45
            elif(self.i<45):
                y_th -= 35
            else:
                y_th -= 10
                x_th += 10
            # Update SLAM with current Lidar scan
            #self.slam.update(self.lidar.getScan())
            data = getHokuyoData([x_th, y_th],
                                 -self.i*5/180.0*np.pi, [np.array([[0, 2000, 2000, 0],[0, 0, 3000, 3000]]),
                                 np.array([[650, 1350, 1350, 650],[1450, 1450, 1550, 1550]]),
                                 np.array([[1500, 1600, 1600, 1500],[1000, 1000, 1100, 1100]]),
                                 np.array([[1000+200*np.cos(k*10/180*np.pi) for k in range(0,36)],
                                           [2500+200*np.sin(k*10/180*np.pi) for k in range(0,36)]])], 0)

            list = data[1].tolist()
            if(len(list) == 682):
                self.slam.update(list, [0,0,0.1])

            # Get current robot position
            y, x, theta = self.slam.getpos()
            x-=3500
            y-=3500
            x = -x
            #y-=198
            x+=1500
            y+=1300

            #angle = self.RAW_ANGLE + theta*3.1415/180
            #R = np.array([[np.cos(angle), -np.sin(angle)],[np.sin(angle), np.cos(angle)]])
            #pos = R.dot(np.array([x,y]))
            pos = np.array([x,y])

            self.bot_pos.append(pos)
            self.bot_ori.append(theta)

            self.i += 1

    def stop(self):
        self.state = False
コード例 #9
0
ファイル: xvslam.py プロジェクト: 3660628/BreezySLAM
LIDAR_DEVICE            = '/dev/ttyACM0'

from breezyslam.algorithms import RMHC_SLAM
from breezyslam.components import XVLidar as LaserModel

from xvlidar import XVLidar as Lidar

from cvslamshow import SlamShow

if __name__ == '__main__':

    # Connect to Lidar unit
    lidar = Lidar(LIDAR_DEVICE)

    # Create an RMHC SLAM object with a laser model and optional robot model
    slam = RMHC_SLAM(LaserModel(), MAP_SIZE_PIXELS, MAP_SIZE_METERS)

    # Set up a SLAM display
    display = SlamShow(MAP_SIZE_PIXELS, MAP_SIZE_METERS*1000/MAP_SIZE_PIXELS, 'SLAM')

    # Initialize an empty trajectory
    trajectory = []

    # Initialize empty map
    mapbytes = bytearray(MAP_SIZE_PIXELS * MAP_SIZE_PIXELS)

    while True:

        # Update SLAM with current Lidar scan, using first element of (scan, quality) pairs
        slam.update([pair[0] for pair in lidar.getScan()])
コード例 #10
0
ファイル: urgslam.py プロジェクト: simondlevy/BreezySLAM
LIDAR_DEVICE            = '/dev/ttyACM0'

from breezyslam.algorithms import RMHC_SLAM
from breezyslam.sensors import URG04LX as LaserModel

from breezylidar import URG04LX as Lidar

from roboviz import MapVisualizer
       
if __name__ == '__main__':

    # Connect to Lidar unit
    lidar = Lidar(LIDAR_DEVICE)

    # Create an RMHC SLAM object with a laser model and optional robot model
    slam = RMHC_SLAM(LaserModel(), MAP_SIZE_PIXELS, MAP_SIZE_METERS)

    # Set up a SLAM display
    viz = MapVisualizer(MAP_SIZE_PIXELS, MAP_SIZE_METERS, 'SLAM')

    # Initialize empty map
    mapbytes = bytearray(MAP_SIZE_PIXELS * MAP_SIZE_PIXELS)

    while True:

        # Update SLAM with current Lidar scan
        slam.update(lidar.getScan())

        # Get current robot position
        x, y, theta = slam.getpos()
コード例 #11
0
class Robot:
    def __init__(self):
        # Connect to Lidar unit
        self.lidar = lidarReader('/dev/mylidar', 115200)
        self.mover = MotorController()
        # Create an RMHC SLAM object with a laser model and optional robot model
        self.slam = RMHC_SLAM(LaserModel(), MAP_SIZE_PIXELS, MAP_SIZE_METERS)
        # Set up a SLAM display
        self.viz = MapVisualizer(MAP_SIZE_PIXELS, MAP_SIZE_METERS, 'SLAM')
        # Initialize empty map
        self.mapbytes = bytearray(MAP_SIZE_PIXELS * MAP_SIZE_PIXELS)
        self.left_distance_table = np.zeros(80)
        self.right_distance_table = np.zeros(80)
        self.thread = threading.Thread(target=self.navigate, args=())
        self.thread.start()

    def constructmap(self):
        while True:
            time.sleep(0.0001)
            # Update SLAM with current Lidar scan, using first element of (scan, quality) pairs
            self.slam.update(self.lidar.getdata())
            # Get current robot position
            x, y, theta = self.slam.getpos()
            # Get current map bytes as grayscale
            self.slam.getmap(self.mapbytes)
            # Display map and robot pose, exiting gracefully if user closes it
            if not self.viz.display(x / 1000., y / 1000., theta,
                                    self.mapbytes):
                break
                exit(0)

    def navigate(self):
        while True:
            time.sleep(
                0.01)  # (yield) allowing reading data from the serailport
            front_too_close, left_too_close, right_too_close = False, False, False
            if (self.lidar.angle_180 < 400):
                front_too_close = True
            left_angle = np.argmin(self.lidar.left_container)
            right_angle = np.argmin(self.lidar.right_container)
            if (self.lidar.left_container[left_angle] < 250):
                left_too_close = True
            if (self.lidar.right_container[right_angle] < 250):
                right_too_close = True
            if (front_too_close and left_too_close and right_too_close):
                self.mover.backward()
            elif (front_too_close):
                if (self.lidar.angle_270 > self.lidar.angle_90):
                    self.mover.turn_left()
                else:
                    self.mover.turn_right()
            elif (left_too_close or right_too_close):
                if (left_too_close):
                    self.mover.turn_right(left_angle)
                else:
                    self.mover.turn_left(right_angle)
            else:
                self.mover.forward()

            print(front_too_close, left_too_close, right_too_close,
                  self.lidar.angle_180)
コード例 #12
0
import time



if __name__ == '__main__':
    
    lidar = rplidar.RPLidar(sys.argv[1])


    print('RPLidar health:', lidar.get_health()[0])
    print('RPLidar info: ', lidar.get_info())

    lidar.start_motor()
    scans_iterator = lidar.iter_scans()

    slam = RMHC_SLAM(RPLidarA1(), 800, 5)
    
    
    uvon_dev = serial.Serial(sys.argv[2], 115200)
    time.sleep(2)
    uvon_dev.write(b'2\n')
    uvon_dev.write(b'I1\n')

    atexit.register(lambda: uvon_dev.write(b'2\n'))
    atexit.register(lambda: uvon_dev.write(b'I0\n'))
    atexit.register(lidar.stop)
    atexit.register(lidar.disconnect)

    forward_cmd = b'm1,15,0,15\n'
    backward_cmd = b'm0,15,1,15\n'
    left_cmd = b'm1,1,0,15\n'
コード例 #13
0
ファイル: slam_final.py プロジェクト: wangfanxin/UVBot
def run_slam(LIDAR_DEVICE, MAP_SIZE_PIXELS, MAP_SIZE_METERS, mapbytes,
             posbytes, odometry, command, state, STATES):
    MIN_SAMPLES = 200

    # Connect to Lidar unit
    lidar = start_lidar(LIDAR_DEVICE)
    # Create an RMHC SLAM object with a laser model and optional robot model
    slam = RMHC_SLAM(LaserModel(),
                     MAP_SIZE_PIXELS,
                     MAP_SIZE_METERS,
                     map_quality=_DEFAULT_MAP_QUALITY,
                     hole_width_mm=_DEFAULT_HOLE_WIDTH_MM,
                     random_seed=None,
                     sigma_xy_mm=_DEFAULT_SIGMA_XY_MM,
                     sigma_theta_degrees=_DEFAULT_SIGMA_THETA_DEGREES,
                     max_search_iter=_DEFAULT_MAX_SEARCH_ITER)
    # Initialize empty map
    mapbytes_ = bytearray(MAP_SIZE_PIXELS * MAP_SIZE_PIXELS)
    # Send command to start scan
    lidar.start_scan()
    # We will use these to store previous scan in case current scan is inadequate
    previous_distances = None
    previous_angles = None

    pose_change = (0, 0, 0)
    pose_change_find = (0, 0, 0)
    iter_times = 1
    while command[0] != b'qa':

        # read a scan
        items = lidar.scan()

        # Extract distances and angles from triples
        distances = [item[2] for item in items]
        angles = [item[1] for item in items]

        if state[0] == STATES['stop']:
            if command[0] == b'lm':
                mapbytes_find = mapbytes

                pose_change_find = find_slam_pos(lidar, MAP_SIZE_PIXELS,
                                                 MAP_SIZE_METERS,
                                                 mapbytes_find,
                                                 pose_change_find,
                                                 iter_times / 2.0, slam)
                iter_times = iter_times + 1.0
                print(pose_change_find)
                pose_change = pose_change_find
                pose_change_find = (0, 0, 0)
                '''
                items = lidar.scan()

        # Extract distances and angles from triples
                distances = [item[2] for item in items]
                angles    = [item[1] for item in items]

                slam.update(distances, pose_change, scan_angles_degrees=angles)
                '''

                if (iter_times > 10):
                    command[0] = b'w'
                    print(slam)

                    slam.setmap(mapbytes_find)
                    pose_change = pose_change_find
                    pose_change_find = (0, 0, 0)
                    print('ennnnnnnnnnnnnnnnnnd')
                    print(pose_change)
                    iter_times = 1

        else:

            # Update SLAM with current Lidar scan and scan angles if adequate
            if len(distances) > MIN_SAMPLES:
                slam.update(distances, pose_change, scan_angles_degrees=angles)
                previous_distances = distances.copy()
                previous_angles = angles.copy()

            # If not adequate, use previous
            elif previous_distances is not None:
                slam.update(previous_distances,
                            pose_change,
                            scan_angles_degrees=previous_angles)

            #pass the value into point_cal function
            global point_a, point_b
            global current_theta_o
            # Get current robot position
            x, y, theta = slam.getpos()
            current_theta_o = theta
            point_a = x - 5000
            point_b = y - 5000

            # Calculate robot position in the map
            xbytes = int(x / 1000. / MAP_SIZE_METERS * MAP_SIZE_PIXELS)
            ybytes = int(y / 1000. / MAP_SIZE_METERS * MAP_SIZE_PIXELS)
            # Update robot position
            posbytes[xbytes + ybytes * MAP_SIZE_PIXELS] = 255
            #print('LIDAR::', command[0], x,y,theta)
            pose_change = (odometry[0], odometry[1] / np.pi * 180, odometry[2])
            # Get current map bytes as grayscale
            slam.getmap(mapbytes_)
            # Update map
            mapbytes[:] = mapbytes_

    # Shut down the lidar connection
    lidar.stop()
    lidar.disconnect()

    print('LIDAR::thread ends')
コード例 #14
0
ファイル: map2socket.py プロジェクト: AlbiziaLebbeck/LidarBot
import paho.mqtt.client as mqtt
import math
import matplotlib.pyplot as plt
import numpy as np
import socket
import time

from breezyslam.algorithms import RMHC_SLAM
from breezyslam.sensors import RPLidarA1 as LaserModel
from PIL import Image

MAP_SIZE_PIXELS = 500
MAP_SIZE_METERS = 35
MIN_SAMPLES = 200

slam = RMHC_SLAM(LaserModel(), MAP_SIZE_PIXELS, MAP_SIZE_METERS, random_seed=1)
mapbytes = bytearray(MAP_SIZE_PIXELS * MAP_SIZE_PIXELS)

Dist = {}

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.connect(('127.0.0.1', 4013))


def mm2pix(mm):
    return int(mm / (MAP_SIZE_METERS * 1000. / MAP_SIZE_PIXELS))


def on_connect(self, client, userdata, rc):
    print("MQTT Connected.")
    self.subscribe("/ldb01/mapdata")
コード例 #15
0
def main():

    # Bozo filter for input args
    if len(argv) < 3:
        print('Usage:   %s <dataset> <use_odometry> [random_seed]' % argv[0])
        print('Example: %s exp2 1 9999' % argv[0])
        exit(1)

    # Grab input args
    dataset = argv[1]
    use_odometry = True if int(argv[2]) else False
    seed = int(argv[3]) if len(argv) > 3 else 0

    # Load the data from the file, ignoring timestamps
    _, lidars, odometries = load_data('.', dataset)

    # Build a robot model if we want odometry
    robot = Rover() if use_odometry else None

    # Create a CoreSLAM object with laser params and optional robot object
    slam = RMHC_SLAM(MinesLaser(), MAP_SIZE_PIXELS, MAP_SIZE_METERS, random_seed=seed) \
           if seed \
           else Deterministic_SLAM(MinesLaser(), MAP_SIZE_PIXELS, MAP_SIZE_METERS)

    # Report what we're doing
    nscans = len(lidars)
    print('Processing %d scans with%s odometry / with%s particle filter...' % \
        (nscans, \
         '' if use_odometry else 'out', '' if seed else 'out'))
    progbar = ProgressBar(0, nscans, 80)

    # Start with an empty trajectory of positions
    trajectory = []

    # Start timing
    start_sec = time()

    # Loop over scans
    for scanno in range(nscans):

        if use_odometry:

            # Convert odometry to velocities
            velocities = robot.computePoseChange(odometries[scanno])

            # Update SLAM with lidar and velocities
            slam.update(lidars[scanno], velocities)

        else:

            # Update SLAM with lidar alone
            slam.update(lidars[scanno])

        # Get new position
        x_mm, y_mm, theta_degrees = slam.getpos()

        # Add new position to trajectory
        trajectory.append((x_mm, y_mm))

        # Tame impatience
        progbar.updateAmount(scanno)
        stdout.write('\r%s' % str(progbar))
        stdout.flush()

    # Report elapsed time
    elapsed_sec = time() - start_sec
    print('\n%d scans in %f sec = %f scans / sec' %
          (nscans, elapsed_sec, nscans / elapsed_sec))

    # Create a byte array to receive the computed maps
    mapbytes = bytearray(MAP_SIZE_PIXELS * MAP_SIZE_PIXELS)

    # Get final map
    slam.getmap(mapbytes)

    # Pickle the map to a file
    pklname = dataset + '.map'
    print('Writing map to file ' + pklname)
    pickle.dump(mapbytes, open(pklname, 'wb'))
コード例 #16
0
ファイル: roboPorterTest.py プロジェクト: flemish4/RoboPorter
def main():

    # Grab input args
    dataset = "testLidar"
    use_odometry = True
    seed = 0

    # Load the data from the file, ignoring timestamps
    lidars, velocities = load_data('.', dataset)

    # Build a robot model if we want odometry
    robot = RoboPorter() if use_odometry else None

    # Create a CoreSLAM object with laser params and optional robot object
    slam = RMHC_SLAM(roboPorterLaser(),
                     MAP_SIZE_PIXELS,
                     MAP_SIZE_METERS,
                     random_seed=seed)  # \
    #if seed \
    #else Deterministic_SLAM(roboPorterLaser(), MAP_SIZE_PIXELS, MAP_SIZE_METERS)

    # Report what we're doing
    nscans = len(lidars)
    print('Processing %d scans with%s odometry / with%s particle filter...' % \
        (nscans, \
         '' if use_odometry else 'out', '' if seed else 'out'))
    progbar = ProgressBar(0, nscans, 80)

    # Start with an empty trajectory of positions
    trajectory = []

    # Start timing
    start_sec = time()

    # Loop over scans
    for scanno in range(nscans):

        print(len(lidars[scanno]))
        # Convert odometry to velocities
        velocitity = velocities[
            scanno]  #dxyMillimeters, dthetaDegrees, dtSeconds

        # Update SLAM with lidar and velocities
        slam.update(lidars[scanno], velocitity)
        # Get new position
        x_mm, y_mm, theta_degrees = slam.getpos()

        # Add new position to trajectory
        trajectory.append((x_mm, y_mm))

        # Tame impatience
        progbar.updateAmount(scanno)
        stdout.write('\r%s' % str(progbar))
        stdout.flush()

    # Report elapsed time
    elapsed_sec = time() - start_sec
    print('\n%d scans in %f sec = %f scans / sec' %
          (nscans, elapsed_sec, nscans / elapsed_sec))

    # Create a byte array to receive the computed maps
    mapbytes = bytearray(MAP_SIZE_PIXELS * MAP_SIZE_PIXELS)

    # Get final map
    slam.getmap(mapbytes)

    # Put trajectory into map as black pixels
    for coords in trajectory:

        x_mm, y_mm = coords

        x_pix = mm2pix(x_mm)
        y_pix = mm2pix(y_mm)

        mapbytes[y_pix * MAP_SIZE_PIXELS + x_pix] = 0

    # Save map and trajectory as PGM file
    pgm_save('%s.pgm' % dataset, mapbytes, (MAP_SIZE_PIXELS, MAP_SIZE_PIXELS))
コード例 #17
0
ファイル: lidar.py プロジェクト: slomrafgrav/rpi-tracker
class Lidar(BaseLidar):
    def __init__(self, on_map_change):
        super().__init__(on_map_change=on_map_change)
        self.lidar = RPLidar(os.getenv('LIDAR_DEVICE', SLAM["LIDAR_DEVICE"]))
        self.slam = RMHC_SLAM(RPLidarA1(), SLAM['MAP_SIZE_PIXELS'],
                              SLAM['MAP_SIZE_METERS'])
        self.map_size_pixels = SLAM['MAP_SIZE_PIXELS']
        self.trajectory = []
        self.mapbytes = bytearray(SLAM['MAP_SIZE_PIXELS'] *
                                  SLAM['MAP_SIZE_PIXELS'])
        self.prev_checksum = 0

    def stop(self):
        # await super().stop()
        self.lidar.stop()
        self.lidar.stop_motor()
        self.lidar.disconnect()

    def run(self):
        try:
            previous_distances = None
            previous_angles = None
            iterator = self.lidar.iter_scans()
            next(iterator)

            while True:
                items = [(q, 360 - angle, dist)
                         for q, angle, dist in next(iterator)]
                distances = [item[2] for item in items]
                angles = [item[1] for item in items]

                if len(distances) > SLAM['MIN_SAMPLES']:
                    self.slam.update(distances, scan_angles_degrees=angles)
                    previous_distances = distances.copy()
                    previous_angles = angles.copy()
                elif previous_distances is not None:
                    self.slam.update(previous_distances,
                                     scan_angles_degrees=previous_angles)

                x, y, theta = self.slam.getpos()
                self.trajectory.append((x, y))

                self.slam.getmap(self.mapbytes)

                for coords in self.trajectory:
                    x_mm, y_mm = coords

                    x_pix = mm2pix(x_mm)
                    y_pix = mm2pix(y_mm)

                    self.mapbytes[y_pix * SLAM['MAP_SIZE_PIXELS'] + x_pix] = 0
                checksum = sum(self.mapbytes)
                if self.on_map_change and checksum != self.prev_checksum:
                    # print(checksum)
                    x = Image.frombuffer(
                        'L', (self.map_size_pixels, self.map_size_pixels),
                        self.mapbytes, 'raw', 'L', 0, 1)
                    bytes_img = io.BytesIO()
                    x.save(bytes_img, format='PNG')
                    self.on_map_change(bytearray(bytes_img.getvalue()))
                self.prev_checksum = checksum
        except Exception as e:
            print(e)
        finally:
            self.stop()
コード例 #18
0
def main():

    # Bozo filter for input args
    if len(argv) < 3:
        print('Usage:   %s <dataset> <use_odometry> <random_seed>' % argv[0])
        print('Example: %s exp2 1 9999' % argv[0])
        exit(1)

    # Grab input args
    dataset = argv[1]
    use_odometry = True if int(argv[2]) else False
    seed = int(argv[3]) if len(argv) > 3 else 0

    # Load the data from the file
    lidars, odometries = load_data('.', dataset)

    # Build a robot model if we want odometry
    robot = Rover() if use_odometry else None

    # Create a CoreSLAM object with laser params and optional robot object
    slam = RMHC_SLAM(MinesLaser(), MAP_SIZE_PIXELS, MAP_SIZE_METERS, random_seed=seed) \
           if seed \
           else Deterministic_SLAM(MinesLaser(), MAP_SIZE_PIXELS, MAP_SIZE_METERS)

    # Report what we're doing
    nscans = len(lidars)
    print('Processing %d scans with%s odometry / with%s particle filter...' % \
        (nscans, \
         '' if use_odometry else 'out', '' if seed else 'out'))
    progbar = ProgressBar(0, nscans, 80)

    # Start with an empty trajectory of positions
    trajectory = []

    # Start timing
    start_sec = time()

    # Loop over scans
    for scanno in range(nscans):

        if use_odometry:

            # Convert odometry to velocities
            velocities = robot.computeVelocities(odometries[scanno])

            # Update SLAM with lidar and velocities
            slam.update(lidars[scanno], velocities)

        else:

            # Update SLAM with lidar alone
            slam.update(lidars[scanno])

        # Get new position
        x_mm, y_mm, theta_degrees = slam.getpos()

        # Add new position to trajectory
        trajectory.append((x_mm, y_mm))

        # Tame impatience
        progbar.updateAmount(scanno)
        stdout.write('\r%s' % str(progbar))
        stdout.flush()

    # Report elapsed time
    elapsed_sec = time() - start_sec
    print('\n%d scans in %f sec = %f scans / sec' %
          (nscans, elapsed_sec, nscans / elapsed_sec))

    # Create a byte array to receive the computed maps
    mapbytes = bytearray(MAP_SIZE_PIXELS * MAP_SIZE_PIXELS)

    # Get final map
    slam.getmap(mapbytes)

    # Put trajectory into map as black pixels
    for coords in trajectory:

        x_mm, y_mm = coords

        x_pix = mm2pix(x_mm)
        y_pix = mm2pix(y_mm)

        mapbytes[y_pix * MAP_SIZE_PIXELS + x_pix] = 0

    # Save map and trajectory as PNG file
    image = Image.frombuffer('L', (MAP_SIZE_PIXELS, MAP_SIZE_PIXELS), mapbytes,
                             'raw', 'L', 0, 1)
    image.save('%s.png' % dataset)
コード例 #19
0
# scan, but on slower computers you'll get an empty map and unchanging position
# at that rate.
MIN_SAMPLES = 200

from breezyslam.algorithms import RMHC_SLAM
from breezyslam.sensors import RPLidarA1 as LaserModel
from rplidar import RPLidar as Lidar
from roboviz import MapVisualizer

if __name__ == '__main__':

    # Connect to Lidar unit
    lidar = Lidar(LIDAR_DEVICE)

    # Create an RMHC SLAM object with a laser model and optional robot model
    slam = RMHC_SLAM(LaserModel(), MAP_SIZE_PIXELS, MAP_SIZE_METERS)

    # Set up a SLAM display
    viz = MapVisualizer(MAP_SIZE_PIXELS, MAP_SIZE_METERS, 'SLAM')

    # Initialize an empty trajectory
    trajectory = []

    # Initialize empty map
    mapbytes = bytearray(MAP_SIZE_PIXELS * MAP_SIZE_PIXELS)

    # Create an iterator to collect scan data from the RPLidar
    iterator = lidar.iter_scans()

    # We will use these to store previous scan in case current scan is inadequate
    previous_distances = None
LIDAR_DEVICE = '/dev/ttyACM0'

from breezyslam.algorithms import RMHC_SLAM
from breezyslam.components import XVLidar as LaserModel

from xvlidar import XVLidar as Lidar

from pltslamshow import SlamShow

if __name__ == '__main__':

    # Connect to Lidar unit
    lidar = Lidar(LIDAR_DEVICE)

    # Create an RMHC SLAM object with a laser model and optional robot model
    slam = RMHC_SLAM(LaserModel(), MAP_SIZE_PIXELS, MAP_SIZE_METERS)

    # Set up a SLAM display
    display = SlamShow(MAP_SIZE_PIXELS,
                       MAP_SIZE_METERS * 1000 / MAP_SIZE_PIXELS, 'SLAM')

    # Initialize an empty trajectory
    trajectory = []

    # Initialize empty map
    mapbytes = bytearray(MAP_SIZE_PIXELS * MAP_SIZE_PIXELS)

    while True:

        # Update SLAM with current Lidar scan, using first element of (scan, quality) pairs
        slam.update([pair[0] for pair in lidar.getScan()])
コード例 #21
0
ファイル: rpslam_scipy.py プロジェクト: simondlevy/BreezySLAM
from breezyslam.sensors import RPLidarA1 as LaserModel

from rplidar import RPLidar as Lidar

from roboviz import MapVisualizer

from scipy.interpolate import interp1d
import numpy as np

if __name__ == '__main__':

    # Connect to Lidar unit
    lidar = Lidar(LIDAR_DEVICE)

    # Create an RMHC SLAM object with a laser model and optional robot model
    slam = RMHC_SLAM(LaserModel(), MAP_SIZE_PIXELS, MAP_SIZE_METERS)

    # Set up a SLAM display
    viz = MapVisualizer(MAP_SIZE_PIXELS, MAP_SIZE_METERS, 'SLAM')

    # Initialize an empty trajectory
    trajectory = []

    # Initialize empty map
    mapbytes = bytearray(MAP_SIZE_PIXELS * MAP_SIZE_PIXELS)

    # Create an iterator to collect scan data from the RPLidar
    iterator = lidar.iter_scans()

    # We will use this to store previous scan in case current scan is inadequate
    previous_distances = None
コード例 #22
0
ファイル: rpslam.py プロジェクト: simondlevy/BreezySLAM
# scan, but on slower computers you'll get an empty map and unchanging position
# at that rate.
MIN_SAMPLES   = 200

from breezyslam.algorithms import RMHC_SLAM
from breezyslam.sensors import RPLidarA1 as LaserModel
from rplidar import RPLidar as Lidar
from roboviz import MapVisualizer

if __name__ == '__main__':

    # Connect to Lidar unit
    lidar = Lidar(LIDAR_DEVICE)

    # Create an RMHC SLAM object with a laser model and optional robot model
    slam = RMHC_SLAM(LaserModel(), MAP_SIZE_PIXELS, MAP_SIZE_METERS)

    # Set up a SLAM display
    viz = MapVisualizer(MAP_SIZE_PIXELS, MAP_SIZE_METERS, 'SLAM')

    # Initialize an empty trajectory
    trajectory = []

    # Initialize empty map
    mapbytes = bytearray(MAP_SIZE_PIXELS * MAP_SIZE_PIXELS)

    # Create an iterator to collect scan data from the RPLidar
    iterator = lidar.iter_scans()

    # We will use these to store previous scan in case current scan is inadequate
    previous_distances = None
コード例 #23
0
ファイル: log2pgm.py プロジェクト: awesomeleo/RPLidar-SLAMbot
def main():
	    
    # Bozo filter for input args
    if len(argv) < 3:
        print('Usage:   %s <dataset> <use_odometry> <random_seed>' % argv[0])
        print('Example: %s exp2 1 9999' % argv[0])
        exit(1)
    
    # Grab input args
    dataset = argv[1]
    use_odometry  =  True if int(argv[2]) else False
    seed =  int(argv[3]) if len(argv) > 3 else 0
    
	# Load the data from the file    
    lidars, odometries = load_data('.', dataset)
    
    # Build a robot model if we want odometry
    robot = Rover() if use_odometry else None
        
    # Create a CoreSLAM object with laser params and optional robot object
    slam = RMHC_SLAM(MinesLaser(), MAP_SIZE_PIXELS, MAP_SIZE_METERS, random_seed=seed) \
           if seed \
           else Deterministic_SLAM(URG04(), MAP_SIZE_PIXELS, MAP_SIZE_METERS)
           
    # Report what we're doing
    nscans = len(lidars)
    print('Processing %d scans with%s odometry / with%s particle filter...' % \
        (nscans, \
         '' if use_odometry else 'out', '' if seed else 'out'))
    progbar = ProgressBar(0, nscans, 80)
    
    # Start with an empty trajectory of positions
    trajectory = []

    # Start timing
    start_sec = time()
    
    # Loop over scans    
    for scanno in range(nscans):
    
        if use_odometry:
                  
            # Convert odometry to velocities
            velocities = robot.computeVelocities(odometries[scanno])
                                 
            # Update SLAM with lidar and velocities
            slam.update(lidars[scanno], velocities)
            
        else:
        
            # Update SLAM with lidar alone
            slam.update(lidars[scanno])
                    
        # Get new position
        x_mm, y_mm, theta_degrees = slam.getpos()    
        
        # Add new position to trajectory
        trajectory.append((x_mm, y_mm))
        
        # Tame impatience
        progbar.updateAmount(scanno)
        stdout.write('\r%s' % str(progbar))
        stdout.flush()

    # Report elapsed time
    elapsed_sec = time() - start_sec
    print('\n%d scans in %f sec = %f scans / sec' % (nscans, elapsed_sec, nscans/elapsed_sec))
                    
                                
    # Create a byte array to receive the computed maps
    mapbytes = bytearray(MAP_SIZE_PIXELS * MAP_SIZE_PIXELS)
    
    # Get final map    
    slam.getmap(mapbytes)
    
    # Put trajectory into map as black pixels
    for coords in trajectory:
                
        x_mm, y_mm = coords
                               
        x_pix = mm2pix(x_mm)
        y_pix = mm2pix(y_mm)
                                                                                              
        mapbytes[y_pix * MAP_SIZE_PIXELS + x_pix] = 0;
                    
    # Save map and trajectory as PGM file    
    pgm_save('%s.pgm' % dataset, mapbytes, (MAP_SIZE_PIXELS, MAP_SIZE_PIXELS))
コード例 #24
0
def create_slam():
    return RMHC_SLAM(SweepLaser(), MAP_SIZE_PIXELS, MAP_SIZE_METERS)