コード例 #1
0
    def test_FISTA_Denoising(self):
        if debug_print:
            print("FISTA Denoising Poisson Noise Tikhonov")
        # adapted from demo FISTA_Tikhonov_Poisson_Denoising.py in CIL-Demos repository
        data = dataexample.SHAPES.get()
        ig = data.geometry
        ag = ig
        N = 300
        # Create Noisy data with Poisson noise
        scale = 5
        noisy_data = applynoise.poisson(data / scale, seed=10) * scale

        # Regularisation Parameter
        alpha = 10

        # Setup and run the FISTA algorithm
        operator = GradientOperator(ig)
        fid = KullbackLeibler(b=noisy_data)
        reg = OperatorCompositionFunction(alpha * L2NormSquared(), operator)

        initial = ig.allocate()
        fista = FISTA(initial=initial, f=reg, g=fid)
        fista.max_iteration = 3000
        fista.update_objective_interval = 500
        fista.run(verbose=0)
        rmse = (fista.get_output() - data).norm() / data.as_array().size
        if debug_print:
            print("RMSE", rmse)
        self.assertLess(rmse, 4.2e-4)
コード例 #2
0
        def setup(data, dnoise):
            if dnoise == 's&p':
                n1 = applynoise.saltnpepper(data,
                                            salt_vs_pepper=0.9,
                                            amount=0.2,
                                            seed=10)
            elif dnoise == 'poisson':
                scale = 5
                n1 = applynoise.poisson(data.as_array() / scale,
                                        seed=10) * scale
            elif dnoise == 'gaussian':
                n1 = applynoise.gaussian(data.as_array(), seed=10)
            else:
                raise ValueError('Unsupported Noise ', noise)
            noisy_data = ig.allocate()
            noisy_data.fill(n1)

            # Regularisation Parameter depending on the noise distribution
            if dnoise == 's&p':
                alpha = 0.8
            elif dnoise == 'poisson':
                alpha = 1
            elif dnoise == 'gaussian':
                alpha = .3
                # fidelity
            if dnoise == 's&p':
                g = L1Norm(b=noisy_data)
            elif dnoise == 'poisson':
                g = KullbackLeibler(b=noisy_data)
            elif dnoise == 'gaussian':
                g = 0.5 * L2NormSquared(b=noisy_data)
            return noisy_data, alpha, g
コード例 #3
0
    def test_SPDHG_vs_PDHG_explicit(self):
        data = dataexample.SIMPLE_PHANTOM_2D.get(size=(128, 128))

        ig = data.geometry
        ig.voxel_size_x = 0.1
        ig.voxel_size_y = 0.1

        detectors = ig.shape[0]
        angles = np.linspace(0, np.pi, 180)
        ag = AcquisitionGeometry('parallel',
                                 '2D',
                                 angles,
                                 detectors,
                                 pixel_size_h=0.1,
                                 angle_unit='radian')
        # Select device
        dev = 'cpu'

        Aop = AstraProjectorSimple(ig, ag, dev)

        sin = Aop.direct(data)
        # Create noisy data. Apply Gaussian noise
        noises = ['gaussian', 'poisson']
        noise = noises[1]
        if noise == 'poisson':
            scale = 5
            noisy_data = scale * applynoise.poisson(sin / scale, seed=10)
            # np.random.seed(10)
            # scale = 5
            # eta = 0
            # noisy_data = AcquisitionData(np.random.poisson( scale * (eta + sin.as_array()))/scale, ag)
        elif noise == 'gaussian':
            noisy_data = noise.gaussian(sin, var=0.1, seed=10)
            # np.random.seed(10)
            # n1 = np.random.normal(0, 0.1, size = ag.shape)
            # noisy_data = AcquisitionData(n1 + sin.as_array(), ag)

        else:
            raise ValueError('Unsupported Noise ', noise)

        #%% 'explicit' SPDHG, scalar step-sizes
        subsets = 10
        size_of_subsets = int(len(angles) / subsets)
        # create Gradient operator
        op1 = GradientOperator(ig)
        # take angles and create uniform subsets in uniform+sequential setting
        list_angles = [
            angles[i:i + size_of_subsets]
            for i in range(0, len(angles), size_of_subsets)
        ]
        # create acquisitioin geometries for each the interval of splitting angles
        list_geoms = [
            AcquisitionGeometry('parallel',
                                '2D',
                                list_angles[i],
                                detectors,
                                pixel_size_h=0.1,
                                angle_unit='radian')
            for i in range(len(list_angles))
        ]
        # create with operators as many as the subsets
        A = BlockOperator(*[
            AstraProjectorSimple(ig, list_geoms[i], dev)
            for i in range(subsets)
        ] + [op1])
        ## number of subsets
        #(sub2ind, ind2sub) = divide_1Darray_equally(range(len(A)), subsets)
        #
        ## acquisisiton data
        ## acquisisiton data
        AD_list = []
        for sub_num in range(subsets):
            for i in range(0, len(angles), size_of_subsets):
                arr = noisy_data.as_array()[i:i + size_of_subsets, :]
                AD_list.append(
                    AcquisitionData(arr, geometry=list_geoms[sub_num]))

        g = BlockDataContainer(*AD_list)
        alpha = 0.5
        ## block function
        F = BlockFunction(*[
            *[KullbackLeibler(b=g[i])
              for i in range(subsets)] + [alpha * MixedL21Norm()]
        ])
        G = IndicatorBox(lower=0)

        prob = [1 / (2 * subsets)] * (len(A) - 1) + [1 / 2]
        spdhg = SPDHG(f=F,
                      g=G,
                      operator=A,
                      max_iteration=1000,
                      update_objective_interval=200,
                      prob=prob)
        spdhg.run(1000, verbose=0)

        #%% 'explicit' PDHG, scalar step-sizes
        op1 = GradientOperator(ig)
        op2 = Aop
        # Create BlockOperator
        operator = BlockOperator(op1, op2, shape=(2, 1))
        f2 = KullbackLeibler(b=noisy_data)
        g = IndicatorBox(lower=0)
        normK = operator.norm()
        sigma = 1 / normK
        tau = 1 / normK

        f1 = alpha * MixedL21Norm()
        f = BlockFunction(f1, f2)
        # Setup and run the PDHG algorithm
        pdhg = PDHG(f=f, g=g, operator=operator, tau=tau, sigma=sigma)
        pdhg.max_iteration = 1000
        pdhg.update_objective_interval = 200
        pdhg.run(1000, verbose=0)

        #%% show diff between PDHG and SPDHG
        # plt.imshow(spdhg.get_output().as_array() -pdhg.get_output().as_array())
        # plt.colorbar()
        # plt.show()

        from cil.utilities.quality_measures import mae, mse, psnr
        qm = (mae(spdhg.get_output(),
                  pdhg.get_output()), mse(spdhg.get_output(),
                                          pdhg.get_output()),
              psnr(spdhg.get_output(), pdhg.get_output()))
        if debug_print:
            print("Quality measures", qm)
        np.testing.assert_almost_equal(mae(spdhg.get_output(),
                                           pdhg.get_output()),
                                       0.00150,
                                       decimal=3)
        np.testing.assert_almost_equal(mse(spdhg.get_output(),
                                           pdhg.get_output()),
                                       1.68590e-05,
                                       decimal=3)