def test_FISTA_Denoising(self): if debug_print: print("FISTA Denoising Poisson Noise Tikhonov") # adapted from demo FISTA_Tikhonov_Poisson_Denoising.py in CIL-Demos repository data = dataexample.SHAPES.get() ig = data.geometry ag = ig N = 300 # Create Noisy data with Poisson noise scale = 5 noisy_data = applynoise.poisson(data / scale, seed=10) * scale # Regularisation Parameter alpha = 10 # Setup and run the FISTA algorithm operator = GradientOperator(ig) fid = KullbackLeibler(b=noisy_data) reg = OperatorCompositionFunction(alpha * L2NormSquared(), operator) initial = ig.allocate() fista = FISTA(initial=initial, f=reg, g=fid) fista.max_iteration = 3000 fista.update_objective_interval = 500 fista.run(verbose=0) rmse = (fista.get_output() - data).norm() / data.as_array().size if debug_print: print("RMSE", rmse) self.assertLess(rmse, 4.2e-4)
def setup(data, dnoise): if dnoise == 's&p': n1 = applynoise.saltnpepper(data, salt_vs_pepper=0.9, amount=0.2, seed=10) elif dnoise == 'poisson': scale = 5 n1 = applynoise.poisson(data.as_array() / scale, seed=10) * scale elif dnoise == 'gaussian': n1 = applynoise.gaussian(data.as_array(), seed=10) else: raise ValueError('Unsupported Noise ', noise) noisy_data = ig.allocate() noisy_data.fill(n1) # Regularisation Parameter depending on the noise distribution if dnoise == 's&p': alpha = 0.8 elif dnoise == 'poisson': alpha = 1 elif dnoise == 'gaussian': alpha = .3 # fidelity if dnoise == 's&p': g = L1Norm(b=noisy_data) elif dnoise == 'poisson': g = KullbackLeibler(b=noisy_data) elif dnoise == 'gaussian': g = 0.5 * L2NormSquared(b=noisy_data) return noisy_data, alpha, g
def test_SPDHG_vs_PDHG_explicit(self): data = dataexample.SIMPLE_PHANTOM_2D.get(size=(128, 128)) ig = data.geometry ig.voxel_size_x = 0.1 ig.voxel_size_y = 0.1 detectors = ig.shape[0] angles = np.linspace(0, np.pi, 180) ag = AcquisitionGeometry('parallel', '2D', angles, detectors, pixel_size_h=0.1, angle_unit='radian') # Select device dev = 'cpu' Aop = AstraProjectorSimple(ig, ag, dev) sin = Aop.direct(data) # Create noisy data. Apply Gaussian noise noises = ['gaussian', 'poisson'] noise = noises[1] if noise == 'poisson': scale = 5 noisy_data = scale * applynoise.poisson(sin / scale, seed=10) # np.random.seed(10) # scale = 5 # eta = 0 # noisy_data = AcquisitionData(np.random.poisson( scale * (eta + sin.as_array()))/scale, ag) elif noise == 'gaussian': noisy_data = noise.gaussian(sin, var=0.1, seed=10) # np.random.seed(10) # n1 = np.random.normal(0, 0.1, size = ag.shape) # noisy_data = AcquisitionData(n1 + sin.as_array(), ag) else: raise ValueError('Unsupported Noise ', noise) #%% 'explicit' SPDHG, scalar step-sizes subsets = 10 size_of_subsets = int(len(angles) / subsets) # create Gradient operator op1 = GradientOperator(ig) # take angles and create uniform subsets in uniform+sequential setting list_angles = [ angles[i:i + size_of_subsets] for i in range(0, len(angles), size_of_subsets) ] # create acquisitioin geometries for each the interval of splitting angles list_geoms = [ AcquisitionGeometry('parallel', '2D', list_angles[i], detectors, pixel_size_h=0.1, angle_unit='radian') for i in range(len(list_angles)) ] # create with operators as many as the subsets A = BlockOperator(*[ AstraProjectorSimple(ig, list_geoms[i], dev) for i in range(subsets) ] + [op1]) ## number of subsets #(sub2ind, ind2sub) = divide_1Darray_equally(range(len(A)), subsets) # ## acquisisiton data ## acquisisiton data AD_list = [] for sub_num in range(subsets): for i in range(0, len(angles), size_of_subsets): arr = noisy_data.as_array()[i:i + size_of_subsets, :] AD_list.append( AcquisitionData(arr, geometry=list_geoms[sub_num])) g = BlockDataContainer(*AD_list) alpha = 0.5 ## block function F = BlockFunction(*[ *[KullbackLeibler(b=g[i]) for i in range(subsets)] + [alpha * MixedL21Norm()] ]) G = IndicatorBox(lower=0) prob = [1 / (2 * subsets)] * (len(A) - 1) + [1 / 2] spdhg = SPDHG(f=F, g=G, operator=A, max_iteration=1000, update_objective_interval=200, prob=prob) spdhg.run(1000, verbose=0) #%% 'explicit' PDHG, scalar step-sizes op1 = GradientOperator(ig) op2 = Aop # Create BlockOperator operator = BlockOperator(op1, op2, shape=(2, 1)) f2 = KullbackLeibler(b=noisy_data) g = IndicatorBox(lower=0) normK = operator.norm() sigma = 1 / normK tau = 1 / normK f1 = alpha * MixedL21Norm() f = BlockFunction(f1, f2) # Setup and run the PDHG algorithm pdhg = PDHG(f=f, g=g, operator=operator, tau=tau, sigma=sigma) pdhg.max_iteration = 1000 pdhg.update_objective_interval = 200 pdhg.run(1000, verbose=0) #%% show diff between PDHG and SPDHG # plt.imshow(spdhg.get_output().as_array() -pdhg.get_output().as_array()) # plt.colorbar() # plt.show() from cil.utilities.quality_measures import mae, mse, psnr qm = (mae(spdhg.get_output(), pdhg.get_output()), mse(spdhg.get_output(), pdhg.get_output()), psnr(spdhg.get_output(), pdhg.get_output())) if debug_print: print("Quality measures", qm) np.testing.assert_almost_equal(mae(spdhg.get_output(), pdhg.get_output()), 0.00150, decimal=3) np.testing.assert_almost_equal(mse(spdhg.get_output(), pdhg.get_output()), 1.68590e-05, decimal=3)