def eval(model_name, X_train, Y_train, X_test, Y_test, cnn=False): """ Load model saved in model_name.json and model_name_weights.h5 and evaluate its accuracy on legitimate test samples and adversarial samples. Use cnn=True if the model is CNN based. """ if not hasattr(backend, "theano"): raise RuntimeError("Requires keras to be configured" " to use the Theano backend.") # Image dimensions ordering should follow the Theano convention if keras.backend.image_dim_ordering() != 'th': keras.backend.set_image_dim_ordering('th') print( "INFO: '~/.keras/keras.json' sets 'image_dim_ordering' to 'tf', temporarily setting to 'th'" ) # Define input Theano placeholder if cnn: x_shape = (None, 28, 28, 1) x = T.tensor4('x') else: x_shape = (None, 784) x = T.matrix('x') y_shape = (None, 10) y = T.matrix('y') # load saved model print("Load model ... ", end="") model = model_from_json( open("models/{}.json".format(model_name)).read(), { 'RBFLayer': RBFLayer, 'InitFromFile': InitFromFile }) model.build(x_shape) model.load_weights("models/{}_weights.h5".format(model_name)) predictions = model(x) print("ok") accuracy = th_model_eval(x, y, predictions, X_test, Y_test, {"batch_size": 128}) print('Test accuracy on legitimate test examples: ' + str(accuracy)) # Craft adversarial examples using Fast Gradient Sign Method (FGSM) adv_x = fgsm(x, predictions, eps=0.3) X_test_adv, = batch_eval([x], [adv_x], [X_test], {"batch_size": 128}) assert X_test_adv.shape[0] == 10000, X_test_adv.shape # Evaluate the accuracy of the MNIST model on adversarial examples accuracy = th_model_eval(x, y, predictions, X_test_adv, Y_test, {"batch_size": 128}) print('Test accuracy on adversarial examples: ' + str(accuracy))
def main(): """ Test the accuracy of the MNIST cleverhans tutorial model :return: """ if not hasattr(backend, "theano"): raise RuntimeError("This tutorial requires keras to be configured" " to use the Theano backend.") # Image dimensions ordering should follow the Theano convention if keras.backend.image_dim_ordering() != 'th': keras.backend.set_image_dim_ordering('th') print( "INFO: '~/.keras/keras.json' sets 'image_dim_ordering' to 'tf', temporarily setting to 'th'" ) import argparse parser = argparse.ArgumentParser() parser.add_argument('--batch_size', '-b', default=128, help='Size of training batches') parser.add_argument('--train_dir', '-d', default='/tmp', help='Directory storing the saved model.') parser.add_argument('--filename', '-f', default='mnist.ckpt', help='Filename to save model under.') parser.add_argument('--nb_epochs', '-e', default=6, type=int, help='Number of epochs to train model') parser.add_argument('--learning_rate', '-lr', default=0.5, type=float, help='Learning rate for training') args = parser.parse_args() # Get MNIST test data X_train, Y_train, X_test, Y_test = data_mnist() print("Loaded MNIST test data.") # Define input Theano placeholder x_shape = (None, 1, 28, 28) y_shape = (None, 10) x = T.tensor4('x') y = T.matrix('y') # Define Theano model graph model = model_mnist() model.build(x_shape) predictions = model(x) print("Defined Theano model graph.") # Train an MNIST model th_model_train(x, y, predictions, model.trainable_weights, X_train, Y_train, args=args) # Evaluate the accuracy of the MNIST model on legitimate test examples accuracy = th_model_eval(x, y, predictions, X_test, Y_test, args=args) assert float(accuracy) >= 0.98, accuracy # Craft adversarial examples using Fast Gradient Sign Method (FGSM) adv_x = fgsm(x, predictions, eps=0.3, back='th') X_test_adv, = batch_eval([x], [adv_x], [X_test], args=args) assert X_test_adv.shape[0] == 10000, X_test_adv.shape # Evaluate the accuracy of the MNIST model on adversarial examples accuracy = th_model_eval(x, y, predictions, X_test_adv, Y_test, args=args) assert float(accuracy) <= 0.1, accuracy
print('Test accuracy on legitimate test examples: ' + str(accuracy)) pass # Train a CIFAR model th_model_train(x, y, predictions, model.trainable_weights, X_train, Y_train, evaluate=evaluate, args=args) # Craft adversarial examples using Fast Gradient Sign Method (FGSM) adv_x = fgsm(x, predictions, eps=0.3) X_test_adv, = batch_eval([x], [adv_x], [X_test], args=args) assert X_test_adv.shape[0] == 10000, X_test_adv.shape # Evaluate the accuracy of the CIFAR model on adversarial examples accuracy = th_model_eval(x, y, predictions, X_test_adv, Y_test, args=args) print('Test accuracy on adversarial examples: ' + str(accuracy)) print("Repeating the process, using adversarial training") x_2 = T.tensor4('x_2') y_2 = T.matrix('y_2') model_2 = cifar_net() model_2.build(x_shape) predictions_2 = model_2(x_2) adv_x_2 = fgsm(x_2, predictions_2, eps=0.3) predictions_adv_2 = model_2(adv_x_2)
def main(): """ Test the accuracy of the MNIST cleverhans tutorial model :return: """ import argparse parser = argparse.ArgumentParser() parser.add_argument('--batch_size', '-b', default=128, help='Size of training batches') parser.add_argument('--train_dir', '-d', default='/tmp', help='Directory storing the saved model.') parser.add_argument('--filename', '-f', default='mnist.ckpt', help='Filename to save model under.') parser.add_argument('--nb_epochs', '-e', default=6, type=int, help='Number of epochs to train model') parser.add_argument('--learning_rate', '-lr', default=0.5, type=float, help='Learning rate for training') args = parser.parse_args() # Get MNIST test data X_train, Y_train, X_test, Y_test = data_mnist() print("Loaded MNIST test data.") # Define input Theano placeholder x_shape = (None, 1, 28, 28) y_shape = (None, 10) x = T.tensor4('x') y = T.matrix('y') # Define Theano model graph model = model_mnist() model.build(x_shape) predictions = model(x) print("Defined Theano model graph.") # Train an MNIST model th_model_train(x, y, predictions, model.trainable_weights, X_train, Y_train, args=args) # Evaluate the accuracy of the MNIST model on legitimate test examples accuracy = th_model_eval(x, y, predictions, X_test, Y_test, args=args) assert float(accuracy) >= 0.98, accuracy # Craft adversarial examples using Fast Gradient Sign Method (FGSM) adv_x = fgsm(x, predictions, eps=0.3, back='th') X_test_adv, = batch_eval([x], [adv_x], [X_test], args=args) assert X_test_adv.shape[0] == 10000, X_test_adv.shape # Evaluate the accuracy of the MNIST model on adversarial examples accuracy = th_model_eval(x, y, predictions, X_test_adv, Y_test, args=args) assert float(accuracy) <= 0.1, accuracy
def main(): """ MNIST cleverhans tutorial :return: """ import argparse parser = argparse.ArgumentParser() parser.add_argument('--batch_size', '-b', default=128, help='Size of training batches') parser.add_argument('--train_dir', '-d', default='/tmp', help='Directory storing the saved model.') parser.add_argument('--filename', '-f', default='mnist.ckpt', help='Filename to save model under.') parser.add_argument('--nb_epochs', '-e', default=6, type=int, help='Number of epochs to train model') parser.add_argument('--learning_rate', '-lr', default=0.5, type=float, help='Learning rate for training') args = parser.parse_args() # Get MNIST test data X_train, Y_train, X_test, Y_test = data_mnist() print("Loaded MNIST test data.") assert Y_train.shape[1] == 10. label_smooth = .1 Y_train = Y_train.clip(label_smooth / 9., 1. - label_smooth) # Define input Theano placeholder x_shape = (None, 1, 28, 28) y_shape = (None, 10) x = T.tensor4('x') y = T.matrix('y') # Define Theano model graph model = model_mnist() model.build(x_shape) predictions = model(x) print("Defined Theano model graph.") def evaluate(): # Evaluate the accuracy of the MNIST model on legitimate test examples accuracy = th_model_eval(x, y, predictions, X_test, Y_test, args=args) assert X_test.shape[0] == 10000, X_test.shape print('Test accuracy on legitimate test examples: ' + str(accuracy)) pass # Train an MNIST model th_model_train(x, y, predictions, model.trainable_weights, X_train, Y_train, evaluate=evaluate, args=args) # Craft adversarial examples using Fast Gradient Sign Method (FGSM) adv_x = fgsm(x, predictions, eps=0.3) X_test_adv, = batch_eval([x], [adv_x], [X_test], args=args) assert X_test_adv.shape[0] == 10000, X_test_adv.shape # Evaluate the accuracy of the MNIST model on adversarial examples accuracy = th_model_eval(x, y, predictions, X_test_adv, Y_test, args=args) print('Test accuracy on adversarial examples: ' + str(accuracy)) print("Repeating the process, using adversarial training") # Redefine Theano model graph model_2 = model_mnist() model_2.build(x_shape) predictions_2 = model_2(x) adv_x_2 = fgsm(x, predictions_2, eps=0.3) predictions_2_adv = model_2(adv_x_2) def evaluate_2(): # Evaluate the accuracy of the adversarialy trained MNIST model on # legitimate test examples accuracy = th_model_eval(x, y, predictions_2, X_test, Y_test, args=args) print('Test accuracy on legitimate test examples: ' + str(accuracy)) # Evaluate the accuracy of the adversarially trained MNIST model on # adversarial examples accuracy_adv = th_model_eval(x, y, predictions_2_adv, X_test, Y_test, args=args) print('Test accuracy on adversarial examples: ' + str(accuracy_adv)) # Perform adversarial training th_model_train(x, y, predictions_2, model_2.trainable_weights, X_train, Y_train, predictions_adv=predictions_2_adv, evaluate=evaluate_2, args=args)