예제 #1
0
def eval(model_name, X_train, Y_train, X_test, Y_test, cnn=False):
    """ Load model saved in model_name.json and model_name_weights.h5 and 
    evaluate its accuracy on legitimate test samples and adversarial samples.
    Use cnn=True if the model is CNN based.
    """

    if not hasattr(backend, "theano"):
        raise RuntimeError("Requires keras to be configured"
                           " to use the Theano backend.")

    # Image dimensions ordering should follow the Theano convention
    if keras.backend.image_dim_ordering() != 'th':
        keras.backend.set_image_dim_ordering('th')
        print(
            "INFO: '~/.keras/keras.json' sets 'image_dim_ordering' to 'tf', temporarily setting to 'th'"
        )

    # Define input Theano placeholder
    if cnn:
        x_shape = (None, 28, 28, 1)
        x = T.tensor4('x')
    else:
        x_shape = (None, 784)
        x = T.matrix('x')

    y_shape = (None, 10)
    y = T.matrix('y')

    # load saved model
    print("Load model ... ", end="")
    model = model_from_json(
        open("models/{}.json".format(model_name)).read(), {
            'RBFLayer': RBFLayer,
            'InitFromFile': InitFromFile
        })
    model.build(x_shape)
    model.load_weights("models/{}_weights.h5".format(model_name))
    predictions = model(x)
    print("ok")

    accuracy = th_model_eval(x, y, predictions, X_test, Y_test,
                             {"batch_size": 128})
    print('Test accuracy on legitimate test examples: ' + str(accuracy))

    # Craft adversarial examples using Fast Gradient Sign Method (FGSM)
    adv_x = fgsm(x, predictions, eps=0.3)
    X_test_adv, = batch_eval([x], [adv_x], [X_test], {"batch_size": 128})
    assert X_test_adv.shape[0] == 10000, X_test_adv.shape

    # Evaluate the accuracy of the MNIST model on adversarial examples
    accuracy = th_model_eval(x, y, predictions, X_test_adv, Y_test,
                             {"batch_size": 128})
    print('Test accuracy on adversarial examples: ' + str(accuracy))
예제 #2
0
def main():
    """
    Test the accuracy of the MNIST cleverhans tutorial model
    :return:
    """

    if not hasattr(backend, "theano"):
        raise RuntimeError("This tutorial requires keras to be configured"
                           " to use the Theano backend.")

    # Image dimensions ordering should follow the Theano convention
    if keras.backend.image_dim_ordering() != 'th':
        keras.backend.set_image_dim_ordering('th')
        print(
            "INFO: '~/.keras/keras.json' sets 'image_dim_ordering' to 'tf', temporarily setting to 'th'"
        )

    import argparse
    parser = argparse.ArgumentParser()
    parser.add_argument('--batch_size',
                        '-b',
                        default=128,
                        help='Size of training batches')
    parser.add_argument('--train_dir',
                        '-d',
                        default='/tmp',
                        help='Directory storing the saved model.')
    parser.add_argument('--filename',
                        '-f',
                        default='mnist.ckpt',
                        help='Filename to save model under.')
    parser.add_argument('--nb_epochs',
                        '-e',
                        default=6,
                        type=int,
                        help='Number of epochs to train model')
    parser.add_argument('--learning_rate',
                        '-lr',
                        default=0.5,
                        type=float,
                        help='Learning rate for training')
    args = parser.parse_args()

    # Get MNIST test data
    X_train, Y_train, X_test, Y_test = data_mnist()
    print("Loaded MNIST test data.")

    # Define input Theano placeholder
    x_shape = (None, 1, 28, 28)
    y_shape = (None, 10)
    x = T.tensor4('x')
    y = T.matrix('y')

    # Define Theano model graph
    model = model_mnist()
    model.build(x_shape)
    predictions = model(x)
    print("Defined Theano model graph.")

    # Train an MNIST model
    th_model_train(x,
                   y,
                   predictions,
                   model.trainable_weights,
                   X_train,
                   Y_train,
                   args=args)

    # Evaluate the accuracy of the MNIST model on legitimate test examples
    accuracy = th_model_eval(x, y, predictions, X_test, Y_test, args=args)
    assert float(accuracy) >= 0.98, accuracy

    # Craft adversarial examples using Fast Gradient Sign Method (FGSM)
    adv_x = fgsm(x, predictions, eps=0.3, back='th')
    X_test_adv, = batch_eval([x], [adv_x], [X_test], args=args)
    assert X_test_adv.shape[0] == 10000, X_test_adv.shape

    # Evaluate the accuracy of the MNIST model on adversarial examples
    accuracy = th_model_eval(x, y, predictions, X_test_adv, Y_test, args=args)
    assert float(accuracy) <= 0.1, accuracy
예제 #3
0
    print('Test accuracy on legitimate test examples: ' + str(accuracy))
    pass


# Train a CIFAR model
th_model_train(x,
               y,
               predictions,
               model.trainable_weights,
               X_train,
               Y_train,
               evaluate=evaluate,
               args=args)
# Craft adversarial examples using Fast Gradient Sign Method (FGSM)
adv_x = fgsm(x, predictions, eps=0.3)
X_test_adv, = batch_eval([x], [adv_x], [X_test], args=args)
assert X_test_adv.shape[0] == 10000, X_test_adv.shape

# Evaluate the accuracy of the CIFAR model on adversarial examples
accuracy = th_model_eval(x, y, predictions, X_test_adv, Y_test, args=args)
print('Test accuracy on adversarial examples: ' + str(accuracy))

print("Repeating the process, using adversarial training")
x_2 = T.tensor4('x_2')
y_2 = T.matrix('y_2')
model_2 = cifar_net()
model_2.build(x_shape)
predictions_2 = model_2(x_2)
adv_x_2 = fgsm(x_2, predictions_2, eps=0.3)
predictions_adv_2 = model_2(adv_x_2)
예제 #4
0
def main():
    """
    Test the accuracy of the MNIST cleverhans tutorial model
    :return:
    """
    import argparse
    parser = argparse.ArgumentParser()
    parser.add_argument('--batch_size',
                        '-b',
                        default=128,
                        help='Size of training batches')
    parser.add_argument('--train_dir',
                        '-d',
                        default='/tmp',
                        help='Directory storing the saved model.')
    parser.add_argument('--filename',
                        '-f',
                        default='mnist.ckpt',
                        help='Filename to save model under.')
    parser.add_argument('--nb_epochs',
                        '-e',
                        default=6,
                        type=int,
                        help='Number of epochs to train model')
    parser.add_argument('--learning_rate',
                        '-lr',
                        default=0.5,
                        type=float,
                        help='Learning rate for training')
    args = parser.parse_args()

    # Get MNIST test data
    X_train, Y_train, X_test, Y_test = data_mnist()
    print("Loaded MNIST test data.")

    # Define input Theano placeholder
    x_shape = (None, 1, 28, 28)
    y_shape = (None, 10)
    x = T.tensor4('x')
    y = T.matrix('y')

    # Define Theano model graph
    model = model_mnist()
    model.build(x_shape)
    predictions = model(x)
    print("Defined Theano model graph.")

    # Train an MNIST model
    th_model_train(x,
                   y,
                   predictions,
                   model.trainable_weights,
                   X_train,
                   Y_train,
                   args=args)

    # Evaluate the accuracy of the MNIST model on legitimate test examples
    accuracy = th_model_eval(x, y, predictions, X_test, Y_test, args=args)
    assert float(accuracy) >= 0.98, accuracy

    # Craft adversarial examples using Fast Gradient Sign Method (FGSM)
    adv_x = fgsm(x, predictions, eps=0.3, back='th')
    X_test_adv, = batch_eval([x], [adv_x], [X_test], args=args)
    assert X_test_adv.shape[0] == 10000, X_test_adv.shape

    # Evaluate the accuracy of the MNIST model on adversarial examples
    accuracy = th_model_eval(x, y, predictions, X_test_adv, Y_test, args=args)
    assert float(accuracy) <= 0.1, accuracy
예제 #5
0
def main():
    """
    MNIST cleverhans tutorial
    :return:
    """
    import argparse
    parser = argparse.ArgumentParser()
    parser.add_argument('--batch_size', '-b', default=128, help='Size of training batches')
    parser.add_argument('--train_dir', '-d', default='/tmp', help='Directory storing the saved model.')
    parser.add_argument('--filename', '-f',  default='mnist.ckpt', help='Filename to save model under.')
    parser.add_argument('--nb_epochs', '-e', default=6, type=int, help='Number of epochs to train model')
    parser.add_argument('--learning_rate', '-lr', default=0.5, type=float, help='Learning rate for training')
    args = parser.parse_args()

    # Get MNIST test data
    X_train, Y_train, X_test, Y_test = data_mnist()
    print("Loaded MNIST test data.")

    assert Y_train.shape[1] == 10.
    label_smooth = .1
    Y_train = Y_train.clip(label_smooth / 9., 1. - label_smooth)

    # Define input Theano placeholder
    x_shape = (None, 1, 28, 28)
    y_shape = (None, 10)
    x = T.tensor4('x')
    y = T.matrix('y')

    # Define Theano model graph
    model = model_mnist()
    model.build(x_shape)
    predictions = model(x)
    print("Defined Theano model graph.")

    def evaluate():
        # Evaluate the accuracy of the MNIST model on legitimate test examples
        accuracy = th_model_eval(x, y, predictions, X_test, Y_test, args=args)
        assert X_test.shape[0] == 10000, X_test.shape
        print('Test accuracy on legitimate test examples: ' + str(accuracy))
        pass

    # Train an MNIST model
    th_model_train(x, y, predictions, model.trainable_weights, X_train, Y_train, evaluate=evaluate, args=args)


    # Craft adversarial examples using Fast Gradient Sign Method (FGSM)
    adv_x = fgsm(x, predictions, eps=0.3)
    X_test_adv, = batch_eval([x], [adv_x], [X_test], args=args)
    assert X_test_adv.shape[0] == 10000, X_test_adv.shape

    # Evaluate the accuracy of the MNIST model on adversarial examples
    accuracy = th_model_eval(x, y, predictions, X_test_adv, Y_test, args=args)
    print('Test accuracy on adversarial examples: ' + str(accuracy))

    print("Repeating the process, using adversarial training")
    # Redefine Theano model graph
    model_2 = model_mnist()
    model_2.build(x_shape)
    predictions_2 = model_2(x)
    adv_x_2 = fgsm(x, predictions_2, eps=0.3)
    predictions_2_adv = model_2(adv_x_2)


    def evaluate_2():
        # Evaluate the accuracy of the adversarialy trained MNIST model on
        # legitimate test examples
        accuracy = th_model_eval(x, y, predictions_2, X_test, Y_test, args=args)
        print('Test accuracy on legitimate test examples: ' + str(accuracy))

        # Evaluate the accuracy of the adversarially trained MNIST model on
        # adversarial examples
        accuracy_adv = th_model_eval(x, y, predictions_2_adv, X_test, Y_test, args=args)
        print('Test accuracy on adversarial examples: ' + str(accuracy_adv))

    # Perform adversarial training
    th_model_train(x, y, predictions_2, model_2.trainable_weights, X_train, Y_train, predictions_adv=predictions_2_adv,
            evaluate=evaluate_2, args=args)