def test_layers_convolution_3d(): inC, inH, inW, inD = 1, 3, 3, 3 y = input((inC,inH, inW, inD)) dat = np.ones([1, inC, inH, inW, inD], dtype = np.float32) model = Convolution3D((3, 3, 3), num_filters=1, activation=None, pad=False, strides=1, name='foo') # shape should be model_shape = model(y).foo.shape np.testing.assert_array_equal(model_shape, (1, 1, 1, 1), \ "Error in convolution3D with stride = 1 and padding") res = model(y).eval({y: dat}) expected_res = np.sum(model.foo.W.value) np.testing.assert_array_almost_equal(res[0][0][0][0][0], expected_res, decimal=5, \ err_msg="Error in convolution3D computation with stride = 1 and zeropad = True")
def __init__(self, input_shape, nb_actions, gamma=0.99, explorer=LinearEpsilonAnnealingExplorer(1, 0.1, 1000000), learning_rate=0.00025, momentum=0.95, minibatch_size=32, memory_size=500000, train_after=200000, train_interval=4, target_update_interval=10000, monitor=True): self.input_shape = input_shape self.nb_actions = nb_actions self.gamma = gamma self._train_after = train_after self._train_interval = train_interval self._target_update_interval = target_update_interval self._explorer = explorer self._minibatch_size = minibatch_size self._history = History(input_shape) self._memory = ReplayMemory(memory_size, input_shape[1:], 4) self._num_actions_taken = 0 # Metrics accumulator self._episode_rewards, self._episode_q_means, self._episode_q_stddev = [], [], [] # Action Value model (used by agent to interact with the environment) with default_options(activation=relu, init=he_uniform()): self._action_value_net = Sequential([ Convolution3D((8, 8, 3), 64, strides=1), Convolution3D((4, 4, 4), 32, strides=2), Convolution3D((3, 3, 1), 32, strides=2), Dense(256, init=he_uniform(scale=0.01)), Dense(nb_actions, activation=None, init=he_uniform(scale=0.01)) ]) self._action_value_net.update_signature(Tensor[input_shape]) # Target model used to compute the target Q-values in training, updated # less frequently for increased stability. self._target_net = self._action_value_net.clone(CloneMethod.freeze) # Function computing Q-values targets as part of the computation graph @Function @Signature(post_states=Tensor[input_shape], rewards=Tensor[()], terminals=Tensor[()]) def compute_q_targets(post_states, rewards, terminals): return element_select( terminals, rewards, gamma * reduce_max(self._target_net(post_states), axis=0) + rewards, ) # Define the loss, using Huber Loss (more robust to outliers) @Function @Signature(pre_states=Tensor[input_shape], actions=Tensor[nb_actions], post_states=Tensor[input_shape], rewards=Tensor[()], terminals=Tensor[()]) def criterion(pre_states, actions, post_states, rewards, terminals): # Compute the q_targets q_targets = compute_q_targets(post_states, rewards, terminals) # actions is a 1-hot encoding of the action done by the agent q_acted = reduce_sum(self._action_value_net(pre_states) * actions, axis=0) # Define training criterion as the Huber Loss function return huber_loss(q_targets, q_acted, 1.0) # Adam based SGD lr_schedule = learning_rate_schedule(learning_rate, UnitType.minibatch) m_schedule = momentum_schedule(momentum) vm_schedule = momentum_schedule(0.999) l_sgd = adam(self._action_value_net.parameters, lr_schedule, momentum=m_schedule, variance_momentum=vm_schedule) self._metrics_writer = TensorBoardProgressWriter(freq=1, log_dir='metrics', model=criterion) if monitor else None self._learner = l_sgd self._trainer = Trainer(criterion, (criterion, None), l_sgd, self._metrics_writer)