コード例 #1
0
ファイル: comet.py プロジェクト: zhoukaii/pytorch-lightning
class CometLogger(LightningLoggerBase):
    r"""
    Log using `Comet.ml <https://www.comet.ml>`_. Install it with pip:

    .. code-block:: bash

        pip install comet-ml

    Comet requires either an API Key (online mode) or a local directory path (offline mode).

    **ONLINE MODE**

    .. code-block:: python

        import os
        from pytorch_lightning import Trainer
        from pytorch_lightning.loggers import CometLogger
        # arguments made to CometLogger are passed on to the comet_ml.Experiment class
        comet_logger = CometLogger(
            api_key=os.environ.get('COMET_API_KEY'),
            workspace=os.environ.get('COMET_WORKSPACE'),  # Optional
            save_dir='.',  # Optional
            project_name='default_project',  # Optional
            rest_api_key=os.environ.get('COMET_REST_API_KEY'),  # Optional
            experiment_name='default'  # Optional
        )
        trainer = Trainer(logger=comet_logger)

    **OFFLINE MODE**

    .. code-block:: python

        from pytorch_lightning.loggers import CometLogger
        # arguments made to CometLogger are passed on to the comet_ml.Experiment class
        comet_logger = CometLogger(
            save_dir='.',
            workspace=os.environ.get('COMET_WORKSPACE'),  # Optional
            project_name='default_project',  # Optional
            rest_api_key=os.environ.get('COMET_REST_API_KEY'),  # Optional
            experiment_name='default'  # Optional
        )
        trainer = Trainer(logger=comet_logger)

    Args:
        api_key: Required in online mode. API key, found on Comet.ml. If not given, this
            will be loaded from the environment variable COMET_API_KEY or ~/.comet.config
            if either exists.
        save_dir: Required in offline mode. The path for the directory to save local
            comet logs. If given, this also sets the directory for saving checkpoints.
        project_name: Optional. Send your experiment to a specific project.
            Otherwise will be sent to Uncategorized Experiments.
            If the project name does not already exist, Comet.ml will create a new project.
        rest_api_key: Optional. Rest API key found in Comet.ml settings.
            This is used to determine version number
        experiment_name: Optional. String representing the name for this particular experiment on Comet.ml.
        experiment_key: Optional. If set, restores from existing experiment.
        offline: If api_key and save_dir are both given, this determines whether
            the experiment will be in online or offline mode. This is useful if you use
            save_dir to control the checkpoints directory and have a ~/.comet.config
            file but still want to run offline experiments.
        \**kwargs: Additional arguments like `workspace`, `log_code`, etc. used by
            :class:`CometExperiment` can be passed as keyword arguments in this logger.
    """
    def __init__(self,
                 api_key: Optional[str] = None,
                 save_dir: Optional[str] = None,
                 project_name: Optional[str] = None,
                 rest_api_key: Optional[str] = None,
                 experiment_name: Optional[str] = None,
                 experiment_key: Optional[str] = None,
                 offline: bool = False,
                 **kwargs):
        if comet_ml is None:
            raise ImportError(
                "You want to use `comet_ml` logger which is not installed yet,"
                " install it with `pip install comet-ml`.")
        super().__init__()
        self._experiment = None

        # Determine online or offline mode based on which arguments were passed to CometLogger
        api_key = api_key or comet_ml.config.get_api_key(
            None, comet_ml.config.get_config())

        if api_key is not None and save_dir is not None:
            self.mode = "offline" if offline else "online"
            self.api_key = api_key
            self._save_dir = save_dir
        elif api_key is not None:
            self.mode = "online"
            self.api_key = api_key
            self._save_dir = None
        elif save_dir is not None:
            self.mode = "offline"
            self._save_dir = save_dir
        else:
            # If neither api_key nor save_dir are passed as arguments, raise an exception
            raise MisconfigurationException(
                "CometLogger requires either api_key or save_dir during initialization."
            )

        log.info(f"CometLogger will be initialized in {self.mode} mode")

        self._project_name = project_name
        self._experiment_key = experiment_key
        self._experiment_name = experiment_name
        self._kwargs = kwargs
        self._future_experiment_key = None

        if rest_api_key is not None:
            # Comet.ml rest API, used to determine version number
            self.rest_api_key = rest_api_key
            self.comet_api = API(self.rest_api_key)
        else:
            self.rest_api_key = None
            self.comet_api = None

        self._kwargs = kwargs

    @property
    @rank_zero_experiment
    def experiment(self):
        r"""
        Actual Comet object. To use Comet features in your
        :class:`~pytorch_lightning.core.lightning.LightningModule` do the following.

        Example::

            self.logger.experiment.some_comet_function()

        """
        if self._experiment is not None:
            return self._experiment

        if self._future_experiment_key is not None:
            os.environ["COMET_EXPERIMENT_KEY"] = self._future_experiment_key
            self._future_experiment_key = None

        try:
            if self.mode == "online":
                if self._experiment_key is None:
                    self._experiment = CometExperiment(
                        api_key=self.api_key,
                        project_name=self._project_name,
                        **self._kwargs,
                    )
                    self._experiment_key = self._experiment.get_key()
                else:
                    self._experiment = CometExistingExperiment(
                        api_key=self.api_key,
                        project_name=self._project_name,
                        previous_experiment=self._experiment_key,
                        **self._kwargs,
                    )
            else:
                self._experiment = CometOfflineExperiment(
                    offline_directory=self.save_dir,
                    project_name=self._project_name,
                    **self._kwargs,
                )
        finally:
            os.environ.pop("COMET_EXPERIMENT_KEY", None)

        if self._experiment_name:
            self._experiment.set_name(self._experiment_name)

        return self._experiment

    @rank_zero_only
    def log_hyperparams(self, params: Union[Dict[str, Any],
                                            Namespace]) -> None:
        params = self._convert_params(params)
        params = self._flatten_dict(params)
        self.experiment.log_parameters(params)

    @rank_zero_only
    def log_metrics(self,
                    metrics: Dict[str, Union[torch.Tensor, float]],
                    step: Optional[int] = None) -> None:
        assert rank_zero_only.rank == 0, "experiment tried to log from global_rank != 0"
        # Comet.ml expects metrics to be a dictionary of detached tensors on CPU
        for key, val in metrics.items():
            if is_tensor(val):
                metrics[key] = val.cpu().detach()

        metrics_without_epoch = metrics.copy()
        epoch = metrics_without_epoch.pop('epoch', None)
        self.experiment.log_metrics(metrics_without_epoch,
                                    step=step,
                                    epoch=epoch)

    def reset_experiment(self):
        self._experiment = None

    @rank_zero_only
    def finalize(self, status: str) -> None:
        r"""
        When calling ``self.experiment.end()``, that experiment won't log any more data to Comet.
        That's why, if you need to log any more data, you need to create an ExistingCometExperiment.
        For example, to log data when testing your model after training, because when training is
        finalized :meth:`CometLogger.finalize` is called.

        This happens automatically in the :meth:`~CometLogger.experiment` property, when
        ``self._experiment`` is set to ``None``, i.e. ``self.reset_experiment()``.
        """
        self.experiment.end()
        self.reset_experiment()

    @property
    def save_dir(self) -> Optional[str]:
        return self._save_dir

    @property
    def name(self) -> str:
        # Don't create an experiment if we don't have one
        if self._experiment is not None and self._experiment.project_name is not None:
            return self._experiment.project_name

        if self._project_name is not None:
            return self._project_name

        return "comet-default"

    @property
    def version(self) -> str:
        # Don't create an experiment if we don't have one
        if self._experiment is not None:
            return self._experiment.id

        if self._experiment_key is not None:
            return self._experiment_key

        if self._future_experiment_key is not None:
            return self._future_experiment_key

        # Pre-generate an experiment key
        self._future_experiment_key = comet_ml.generate_guid()

        return self._future_experiment_key

    def __getstate__(self):
        state = self.__dict__.copy()

        # Save the experiment id in case an experiment object already exists,
        # this way we could create an ExistingExperiment pointing to the same
        # experiment
        state[
            "_experiment_key"] = self._experiment.id if self._experiment is not None else None

        # Remove the experiment object as it contains hard to pickle objects
        # (like network connections), the experiment object will be recreated if
        # needed later
        state["_experiment"] = None
        return state
コード例 #2
0
class CometLogger(LightningLoggerBase):
    r"""
    Log using `Comet.ml <https://www.comet.ml>`_. Install it with pip:

    .. code-block:: bash

        pip install comet-ml

    Comet requires either an API Key (online mode) or a local directory path (offline mode).

    **ONLINE MODE**

    Example:
        >>> import os
        >>> from pytorch_lightning import Trainer
        >>> from pytorch_lightning.loggers import CometLogger
        >>> # arguments made to CometLogger are passed on to the comet_ml.Experiment class
        >>> comet_logger = CometLogger(
        ...     api_key=os.environ.get('COMET_API_KEY'),
        ...     workspace=os.environ.get('COMET_WORKSPACE'),  # Optional
        ...     save_dir='.',  # Optional
        ...     project_name='default_project',  # Optional
        ...     rest_api_key=os.environ.get('COMET_REST_API_KEY'),  # Optional
        ...     experiment_name='default'  # Optional
        ... )
        >>> trainer = Trainer(logger=comet_logger)

    **OFFLINE MODE**

    Example:
        >>> from pytorch_lightning.loggers import CometLogger
        >>> # arguments made to CometLogger are passed on to the comet_ml.Experiment class
        >>> comet_logger = CometLogger(
        ...     save_dir='.',
        ...     workspace=os.environ.get('COMET_WORKSPACE'),  # Optional
        ...     project_name='default_project',  # Optional
        ...     rest_api_key=os.environ.get('COMET_REST_API_KEY'),  # Optional
        ...     experiment_name='default'  # Optional
        ... )
        >>> trainer = Trainer(logger=comet_logger)

    Args:
        api_key: Required in online mode. API key, found on Comet.ml
        save_dir: Required in offline mode. The path for the directory to save local comet logs
        workspace: Optional. Name of workspace for this user
        project_name: Optional. Send your experiment to a specific project.
            Otherwise will be sent to Uncategorized Experiments.
            If the project name does not already exist, Comet.ml will create a new project.
        rest_api_key: Optional. Rest API key found in Comet.ml settings.
            This is used to determine version number
        experiment_name: Optional. String representing the name for this particular experiment on Comet.ml.
        experiment_key: Optional. If set, restores from existing experiment.
    """
    def __init__(self,
                 api_key: Optional[str] = None,
                 save_dir: Optional[str] = None,
                 workspace: Optional[str] = None,
                 project_name: Optional[str] = None,
                 rest_api_key: Optional[str] = None,
                 experiment_name: Optional[str] = None,
                 experiment_key: Optional[str] = None,
                 **kwargs):

        if not _COMET_AVAILABLE:
            raise ImportError(
                'You want to use `comet_ml` logger which is not installed yet,'
                ' install it with `pip install comet-ml`.')
        super().__init__()
        self._experiment = None

        # Determine online or offline mode based on which arguments were passed to CometLogger
        if api_key is not None:
            self.mode = "online"
            self.api_key = api_key
        elif save_dir is not None:
            self.mode = "offline"
            self.save_dir = save_dir
        else:
            # If neither api_key nor save_dir are passed as arguments, raise an exception
            raise MisconfigurationException(
                "CometLogger requires either api_key or save_dir during initialization."
            )

        log.info(f"CometLogger will be initialized in {self.mode} mode")

        self.workspace = workspace
        self.project_name = project_name
        self.experiment_key = experiment_key
        self._kwargs = kwargs

        if rest_api_key is not None:
            # Comet.ml rest API, used to determine version number
            self.rest_api_key = rest_api_key
            self.comet_api = API(self.rest_api_key)
        else:
            self.rest_api_key = None
            self.comet_api = None

        if experiment_name:
            try:
                self.name = experiment_name
            except TypeError:
                log.exception(
                    "Failed to set experiment name for comet.ml logger")
        self._kwargs = kwargs

    @property
    def experiment(self) -> CometBaseExperiment:
        r"""
        Actual Comet object. To use Comet features in your
        :class:`~pytorch_lightning.core.lightning.LightningModule` do the following.

        Example::

            self.logger.experiment.some_comet_function()

        """
        if self._experiment is not None:
            return self._experiment

        if self.mode == "online":
            if self.experiment_key is None:
                self._experiment = CometExperiment(
                    api_key=self.api_key,
                    workspace=self.workspace,
                    project_name=self.project_name,
                    **self._kwargs)
                self.experiment_key = self._experiment.get_key()
            else:
                self._experiment = CometExistingExperiment(
                    api_key=self.api_key,
                    workspace=self.workspace,
                    project_name=self.project_name,
                    previous_experiment=self.experiment_key,
                    **self._kwargs)
        else:
            self._experiment = CometOfflineExperiment(
                offline_directory=self.save_dir,
                workspace=self.workspace,
                project_name=self.project_name,
                **self._kwargs)

        return self._experiment

    @rank_zero_only
    def log_hyperparams(self, params: Union[Dict[str, Any],
                                            Namespace]) -> None:
        params = self._convert_params(params)
        params = self._flatten_dict(params)
        self.experiment.log_parameters(params)

    @rank_zero_only
    def log_metrics(self,
                    metrics: Dict[str, Union[torch.Tensor, float]],
                    step: Optional[int] = None) -> None:
        # Comet.ml expects metrics to be a dictionary of detached tensors on CPU
        for key, val in metrics.items():
            if is_tensor(val):
                metrics[key] = val.cpu().detach()

        self.experiment.log_metrics(metrics, step=step)

    def reset_experiment(self):
        self._experiment = None

    @rank_zero_only
    def finalize(self, status: str) -> None:
        r"""
        When calling ``self.experiment.end()``, that experiment won't log any more data to Comet.
        That's why, if you need to log any more data, you need to create an ExistingCometExperiment.
        For example, to log data when testing your model after training, because when training is
        finalized :meth:`CometLogger.finalize` is called.

        This happens automatically in the :meth:`~CometLogger.experiment` property, when
        ``self._experiment`` is set to ``None``, i.e. ``self.reset_experiment()``.
        """
        self.experiment.end()
        self.reset_experiment()

    @property
    def name(self) -> str:
        return str(self.experiment.project_name)

    @name.setter
    def name(self, value: str) -> None:
        self.experiment.set_name(value)

    @property
    def version(self) -> str:
        return self.experiment.id
コード例 #3
0
ファイル: main.py プロジェクト: wronnyhuang/swissroll
    logdir = join(home, 'ckpt/swissroll/' + args.sugg)
    os.makedirs(logdir, exist_ok=True)

    # comet experiment init
    if args.offline:
        experiment = OfflineExperiment(offline_directory=join(logdir, 'comet'),
                                       parse_args=False,
                                       project_name='swissroll-' + args.tag,
                                       workspace="wronnyhuang")
    else:
        experiment = Experiment(api_key="vPCPPZrcrUBitgoQkvzxdsh9k",
                                parse_args=False,
                                project_name='swissroll-' + args.tag,
                                workspace="wronnyhuang")

    open(join(logdir, 'comet_expt_key.txt'), 'w+').write(experiment.get_key())
    if any([a.find('nhidden1') != -1 for a in sys.argv[1:]]):
        args.nhidden = [
            args.nhidden1, args.nhidden2, args.nhidden3, args.nhidden4,
            args.nhidden5, args.nhidden6
        ]
    experiment.log_parameters(vars(args))
    experiment.set_name(args.sugg)
    print(sys.argv)

    os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu)
    np.random.seed(args.seed)
    tf.set_random_seed(args.seed)

    # make dataset
    X, y = twospirals(args.ndata // 2, noise=args.noise)
コード例 #4
0
class CometLogger(LightningLoggerBase):
    r"""
    Log using `comet.ml <https://www.comet.ml>`_.
    """
    def __init__(self,
                 api_key: Optional[str] = None,
                 save_dir: Optional[str] = None,
                 workspace: Optional[str] = None,
                 project_name: Optional[str] = None,
                 rest_api_key: Optional[str] = None,
                 experiment_name: Optional[str] = None,
                 experiment_key: Optional[str] = None,
                 **kwargs):
        r"""

        Requires either an API Key (online mode) or a local directory path (offline mode)

        .. code-block:: python

            # ONLINE MODE
            from pytorch_lightning.loggers import CometLogger
            # arguments made to CometLogger are passed on to the comet_ml.Experiment class
            comet_logger = CometLogger(
                api_key=os.environ["COMET_API_KEY"],
                workspace=os.environ["COMET_WORKSPACE"], # Optional
                project_name="default_project", # Optional
                rest_api_key=os.environ["COMET_REST_API_KEY"], # Optional
                experiment_name="default" # Optional
            )
            trainer = Trainer(logger=comet_logger)

        .. code-block:: python

            # OFFLINE MODE
            from pytorch_lightning.loggers import CometLogger
            # arguments made to CometLogger are passed on to the comet_ml.Experiment class
            comet_logger = CometLogger(
                save_dir=".",
                workspace=os.environ["COMET_WORKSPACE"], # Optional
                project_name="default_project", # Optional
                rest_api_key=os.environ["COMET_REST_API_KEY"], # Optional
                experiment_name="default" # Optional
            )
            trainer = Trainer(logger=comet_logger)

        Args:
            api_key (str): Required in online mode. API key, found on Comet.ml
            save_dir (str): Required in offline mode. The path for the directory to save local comet logs
            workspace (str): Optional. Name of workspace for this user
            project_name (str): Optional. Send your experiment to a specific project.
            Otherwise will be sent to Uncategorized Experiments.
            If project name does not already exists Comet.ml will create a new project.
            rest_api_key (str): Optional. Rest API key found in Comet.ml settings.
                This is used to determine version number
            experiment_name (str): Optional. String representing the name for this particular experiment on Comet.ml.
            experiment_key (str): Optional. If set, restores from existing experiment.
        """
        super().__init__()
        self._experiment = None

        # Determine online or offline mode based on which arguments were passed to CometLogger
        if api_key is not None:
            self.mode = "online"
            self.api_key = api_key
        elif save_dir is not None:
            self.mode = "offline"
            self.save_dir = save_dir
        else:
            # If neither api_key nor save_dir are passed as arguments, raise an exception
            raise MisconfigurationException(
                "CometLogger requires either api_key or save_dir during initialization."
            )

        logger.info(f"CometLogger will be initialized in {self.mode} mode")

        self.workspace = workspace
        self.project_name = project_name
        self.experiment_key = experiment_key
        self._kwargs = kwargs

        if rest_api_key is not None:
            # Comet.ml rest API, used to determine version number
            self.rest_api_key = rest_api_key
            self.comet_api = API(self.rest_api_key)
        else:
            self.rest_api_key = None
            self.comet_api = None

        if experiment_name:
            try:
                self.name = experiment_name
            except TypeError as e:
                logger.exception(
                    "Failed to set experiment name for comet.ml logger")

    @property
    def experiment(self) -> CometBaseExperiment:
        r"""

        Actual comet object. To use comet features do the following.

        Example::

            self.logger.experiment.some_comet_function()

        """
        if self._experiment is not None:
            return self._experiment

        if self.mode == "online":
            if self.experiment_key is None:
                self._experiment = CometExperiment(
                    api_key=self.api_key,
                    workspace=self.workspace,
                    project_name=self.project_name,
                    **self._kwargs)
                self.experiment_key = self._experiment.get_key()
            else:
                self._experiment = CometExistingExperiment(
                    api_key=self.api_key,
                    workspace=self.workspace,
                    project_name=self.project_name,
                    previous_experiment=self.experiment_key,
                    **self._kwargs)
        else:
            self._experiment = CometOfflineExperiment(
                offline_directory=self.save_dir,
                workspace=self.workspace,
                project_name=self.project_name,
                **self._kwargs)

        return self._experiment

    @rank_zero_only
    def log_hyperparams(self, params: argparse.Namespace):
        self.experiment.log_parameters(vars(params))

    @rank_zero_only
    def log_metrics(self,
                    metrics: Dict[str, Union[torch.Tensor, float]],
                    step: Optional[int] = None):
        # Comet.ml expects metrics to be a dictionary of detached tensors on CPU
        for key, val in metrics.items():
            if is_tensor(val):
                metrics[key] = val.cpu().detach()

        self.experiment.log_metrics(metrics, step=step)

    def reset_experiment(self):
        self._experiment = None

    @rank_zero_only
    def finalize(self, status: str):
        r"""
        When calling self.experiment.end(), that experiment won't log any more data to Comet. That's why, if you need
        to log any more data you need to create an ExistingCometExperiment. For example, to log data when testing your
        model after training, because when training is finalized CometLogger.finalize is called.

        This happens automatically in the CometLogger.experiment property, when self._experiment is set to None
        i.e. self.reset_experiment().
        """
        self.experiment.end()
        self.reset_experiment()

    @property
    def name(self) -> str:
        return self.experiment.project_name

    @name.setter
    def name(self, value: str):
        self.experiment.set_name(value)

    @property
    def version(self) -> str:
        return self.experiment.id
コード例 #5
0
class CometLogger(Logger):
    def __init__(
        self,
        batch_size: int,
        snapshot_dir: Optional[str] = None,
        snapshot_mode: str = "last",
        snapshot_gap: int = 1,
        exp_set: Optional[str] = None,
        use_print_exp: bool = False,
        saved_exp: Optional[str] = None,
        **kwargs,
    ):
        """
        :param kwargs: passed to comet's Experiment at init.
        """
        if use_print_exp:
            self.experiment = PrintExperiment()
        else:
            from comet_ml import Experiment, ExistingExperiment, OfflineExperiment

            if saved_exp:
                self.experiment = ExistingExperiment(
                    previous_experiment=saved_exp, **kwargs
                )
            else:
                try:
                    self.experiment = Experiment(**kwargs)
                except ValueError:  # no API key
                    log_dir = Path.home() / "logs"
                    log_dir.mkdir(exist_ok=True)
                    self.experiment = OfflineExperiment(offline_directory=str(log_dir))

        self.experiment.log_parameter("complete", False)
        if exp_set:
            self.experiment.log_parameter("exp_set", exp_set)
        if snapshot_dir:
            snapshot_dir = Path(snapshot_dir) / self.experiment.get_key()
        # log_traj_window (int): How many trajectories to hold in deque for computing performance statistics.
        self.log_traj_window = 100
        self._cum_metrics = {
            "n_unsafe_actions": 0,
            "constraint_used": 0,
            "cum_completed_trajs": 0,
            "logging_time": 0,
        }
        self._new_completed_trajs = 0
        self._last_step = 0
        self._start_time = self._last_time = time()
        self._last_snapshot_upload = 0
        self._snaphot_upload_time = 30 * 60

        super().__init__(batch_size, snapshot_dir, snapshot_mode, snapshot_gap)

    def log_fast(
        self,
        step: int,
        traj_infos: Sequence[Dict[str, float]],
        opt_info: Optional[Tuple[Sequence[float], ...]] = None,
        test: bool = False,
    ) -> None:
        if not traj_infos:
            return
        start = time()

        self._new_completed_trajs += len(traj_infos)
        self._cum_metrics["cum_completed_trajs"] += len(traj_infos)
        # TODO: do we need to support sum(t[k]) if key in k?
        # without that, this doesn't include anything from extra eval samplers
        for key in self._cum_metrics:
            if key == "cum_completed_trajs":
                continue
            self._cum_metrics[key] += sum(t.get(key, 0) for t in traj_infos)
        self._cum_metrics["logging_time"] += time() - start

    def log(
        self,
        step: int,
        traj_infos: Sequence[Dict[str, float]],
        opt_info: Optional[Tuple[Sequence[float], ...]] = None,
        test: bool = False,
    ):
        self.log_fast(step, traj_infos, opt_info, test)
        start = time()
        with (self.experiment.test() if test else nullcontext()):
            step *= self.batch_size
            if opt_info is not None:
                # grad norm is left on the GPU for some reason
                # https://github.com/astooke/rlpyt/issues/163
                self.experiment.log_metrics(
                    {
                        k: np.mean(v)
                        for k, v in opt_info._asdict().items()
                        if k != "gradNorm"
                    },
                    step=step,
                )

            if traj_infos:
                agg_vals = {}
                for key in traj_infos[0].keys():
                    if key in self._cum_metrics:
                        continue
                    agg_vals[key] = sum(t[key] for t in traj_infos) / len(traj_infos)
                self.experiment.log_metrics(agg_vals, step=step)

            if not test:
                now = time()
                self.experiment.log_metrics(
                    {
                        "new_completed_trajs": self._new_completed_trajs,
                        "steps_per_second": (step - self._last_step)
                        / (now - self._last_time),
                    },
                    step=step,
                )
                self._last_time = now
                self._last_step = step
                self._new_completed_trajs = 0

        self.experiment.log_metrics(self._cum_metrics, step=step)
        self._cum_metrics["logging_time"] += time() - start

    def log_metric(self, name, val):
        self.experiment.log_metric(name, val)

    def log_parameters(self, parameters):
        self.experiment.log_parameters(parameters)

    def log_config(self, config):
        self.experiment.log_parameter("config", json.dumps(convert_dict(config)))

    def upload_snapshot(self):
        if self.snapshot_dir:
            self.experiment.log_asset(self._previous_snapshot_fname)

    def save_itr_params(
        self, step: int, params: Dict[str, Any], metric: Optional[float] = None
    ) -> None:
        super().save_itr_params(step, params, metric)
        now = time()
        if now - self._last_snapshot_upload > self._snaphot_upload_time:
            self._last_snapshot_upload = now
            self.upload_snapshot()

    def shutdown(self, error: bool = False) -> None:
        if not error:
            self.upload_snapshot()
            self.experiment.log_parameter("complete", True)
        self.experiment.end()
コード例 #6
0
    metrics.append(FinalTargetAccuracy(ignore_index=pad, eos_id=tgt.eos_id))
if 'sym_rwr_acc' in opt.metrics:
    metrics.append(
        SymbolRewritingAccuracy(input_vocab=input_vocab,
                                output_vocab=output_vocab,
                                use_output_eos=use_output_eos,
                                output_sos_symbol=tgt.SYM_SOS,
                                output_pad_symbol=tgt.pad_token,
                                output_eos_symbol=tgt.SYM_EOS,
                                output_unk_symbol=tgt.unk_token))

checkpoint_path = os.path.join(opt.output_dir,
                               opt.load_checkpoint) if opt.resume else None

# create trainer
expt_dir = os.path.join(opt.output_dir, experiment.get_key())
t = SupervisedTrainer(expt_dir=expt_dir)

seq2seq, logs = t.train(model=seq2seq,
                        data=train,
                        dev_data=dev,
                        monitor_data=monitor_data,
                        num_epochs=opt.epochs,
                        optimizer=opt.optim,
                        teacher_forcing_ratio=opt.teacher_forcing_ratio,
                        learning_rate=opt.lr,
                        resume_training=opt.resume,
                        checkpoint_path=checkpoint_path,
                        losses=losses,
                        metrics=metrics,
                        loss_weights=loss_weights,