コード例 #1
0
ファイル: teacher.py プロジェクト: ffrommel/RLinWiFi
class Logger:
    def __init__(self, send_logs, tags, parameters, experiment=None):
        self.stations = 5
        self.send_logs = send_logs
        if self.send_logs:
            if experiment is None:
                json_loc = glob.glob("./**/comet_token.json")[0]
                with open(json_loc, "r") as f:
                    kwargs = json.load(f)

                self.experiment = OfflineExperiment(**kwargs)
            else:
                self.experiment = experiment
        self.sent_mb = 0
        self.speed_window = deque(maxlen=100)
        self.step_time = None
        self.current_speed = 0
        if self.send_logs:
            if tags is not None:
                self.experiment.add_tags(tags)
            if parameters is not None:
                self.experiment.log_parameters(parameters)

    def begin_logging(self, episode_count, steps_per_ep, sigma, theta, step_time):
        self.step_time = step_time
        if self.send_logs:
            self.experiment.log_parameter("Episode count", episode_count)
            self.experiment.log_parameter("Steps per episode", steps_per_ep)
            self.experiment.log_parameter("theta", theta)
            self.experiment.log_parameter("sigma", sigma)

    def log_round(self, states, reward, cumulative_reward, info, loss, observations, step):
        self.experiment.log_histogram_3d(states, name="Observations", step=step)
        info = [[j for j in i.split("|")] for i in info]
        info = np.mean(np.array(info, dtype=np.float32), axis=0)
        try:
            round_mb = info[0]
        except Exception as e:
            print(info)
            print(reward)
            raise e
        self.speed_window.append(round_mb)
        self.current_speed = np.mean(np.asarray(self.speed_window)/self.step_time)
        self.sent_mb += round_mb
        CW = info[1]
        CW_ax = info[2]
        self.stations = info[3]
        fairness = info[4]

        if self.send_logs:
            self.experiment.log_metric("Round reward", np.mean(reward), step=step)
            self.experiment.log_metric("Per-ep reward", np.mean(cumulative_reward), step=step)
            self.experiment.log_metric("Megabytes sent", self.sent_mb, step=step)
            self.experiment.log_metric("Round megabytes sent", round_mb, step=step)
            self.experiment.log_metric("Chosen CW for legacy devices", CW, step=step)
            self.experiment.log_metric("Chosen CW for 802.11ax devices", CW_ax, step=step)
            self.experiment.log_metric("Station count", self.stations, step=step)
            self.experiment.log_metric("Current throughput", self.current_speed, step=step)
            self.experiment.log_metric("Fairness index", fairness, step=step)

            for i, obs in enumerate(observations):
                self.experiment.log_metric(f"Observation {i}", obs, step=step)

            self.experiment.log_metrics(loss, step=step)

    def log_episode(self, cumulative_reward, speed, step):
        if self.send_logs:
            self.experiment.log_metric("Cumulative reward", cumulative_reward, step=step)
            self.experiment.log_metric("Speed", speed, step=step)

        self.sent_mb = 0
        self.last_speed = speed
        self.speed_window = deque(maxlen=100)
        self.current_speed = 0

    def end(self):
        if self.send_logs:
            self.experiment.end()
コード例 #2
0
class CometWriter:
    def __init__(self,
                 logger,
                 project_name: Optional[str] = None,
                 experiment_name: Optional[str] = None,
                 api_key: Optional[str] = None,
                 log_dir: Optional[str] = None,
                 offline: bool = False,
                 **kwargs):
        if not _COMET_AVAILABLE:
            raise ImportError(
                "You want to use `comet_ml` logger which is not installed yet,"
                " install it with `pip install comet-ml`.")

        self.project_name = project_name
        self.experiment_name = experiment_name
        self.kwargs = kwargs

        self.timer = Timer()

        if (api_key is not None) and (log_dir is not None):
            self.mode = "offline" if offline else "online"
            self.api_key = api_key
            self.log_dir = log_dir

        elif api_key is not None:
            self.mode = "online"
            self.api_key = api_key
            self.log_dir = None
        elif log_dir is not None:
            self.mode = "offline"
            self.log_dir = log_dir
        else:
            logger.warning(
                "CometLogger requires either api_key or save_dir during initialization."
            )

        if self.mode == "online":
            self.experiment = CometExperiment(
                api_key=self.api_key,
                project_name=self.project_name,
                **self.kwargs,
            )
        else:
            self.experiment = CometOfflineExperiment(
                offline_directory=self.log_dir,
                project_name=self.project_name,
                **self.kwargs,
            )

        if self.experiment_name:
            self.experiment.set_name(self.experiment_name)

    def set_step(self, step, epoch=None, mode='train') -> None:
        self.mode = mode
        self.step = step
        self.epoch = epoch
        if step == 0:
            self.timer.reset()
        else:
            duration = self.timer.check()
            self.add_scalar({'steps_per_sec': 1 / duration})

    def log_hyperparams(self, params: Dict[str, Any]) -> None:
        self.experiment.log_parameters(params)

    def log_code(self, file_name=None, folder='models/') -> None:
        self.experiment.log_code(file_name=file_name, folder=folder)

    def add_scalar(self,
                   metrics: Dict[str, Union[torch.Tensor, float]],
                   step: Optional[int] = None,
                   epoch: Optional[int] = None) -> None:
        metrics_renamed = {}
        for key, val in metrics.items():
            tag = '{}/{}'.format(key, self.mode)
            if is_tensor(val):
                metrics_renamed[tag] = val.cpu().detach()
            else:
                metrics_renamed[tag] = val
        if epoch is None:
            self.experiment.log_metrics(metrics_renamed,
                                        step=self.step,
                                        epoch=self.epoch)
        else:
            self.experiment.log_metrics(metrics_renamed, epoch=epoch)

    def add_plot(self, figure_name, figure):
        """
        Primarily for log gate plots
        """
        self.experiment.log_figure(figure_name=figure_name, figure=figure)

    def add_hist3d(self, hist, name):
        """
        Primarily for log gate plots
        """
        self.experiment.log_histogram_3d(hist, name=name)

    def reset_experiment(self):
        self.experiment = None

    def finalize(self) -> None:
        self.experiment.end()
        self.reset_experiment()