コード例 #1
0
ファイル: idr.py プロジェクト: matbjr/flask_microservice
def calculate_idr_average(param):
    """
    A function to get the average idr of
    the items:
    It gets a list of each item's idr, and
    then calculates the average.

    :param: a json in the Reliabilty Measures
            standard json format
    :return: a float: the average idr
    """
    service_key = get_service_config(11)
    catch_error = get_error(param)
    if catch_error[0]:
        return {service_key: catch_error[1]}
    inp = update_input(param)
    idr_dict = list(calculate_idr(inp).values())[0]
    if idr_dict == get_keyword_value("bad_mean"):
        return {service_key: get_keyword_value("bad_mean")}
    idr_list = list(list(idr_dict.values()))
    num_items = len(idr_list)
    idr_avg = sum(idr_list) / num_items
    idr_avg = round(idr_avg, 3)

    return {service_key: idr_avg}
コード例 #2
0
def get_assumptions(param):
    """
    A function to get the items for which a
    student was assumed to have a response
    of 0:
    It gets a list of all item ids listed from
    every student's responses, then iterates
    through every student. If a student doesn't
    have a response for an item in the id list,
    then that item is assumed to have a response
    of 0 for that student.

    :param: a json in the Reliabilty Measures
            standard json format
    :return: a dictionary of dictionaries:
             a dictionary with student ids as keys
             and a list of item ids as values
    """
    service_key = get_service_config(13)
    catch_error = get_error(param)
    if catch_error[0]:
        return {service_key: catch_error[1]}
    inp = update_input(param)
    student_list = get_student_list(inp)
    id_list = get_item_ids(inp)
    assumptions_dict = {}

    for i in student_list:  # For each student i
        checklist = id_list.copy()
        dupes = []
        for k in i[get_keyword_value("item_responses")]:  # For each question k
            for j in id_list:  # For each item ID j
                if k[get_keyword_value("item_id")] == j:  # If item IDs match
                    if j in checklist:
                        checklist.remove(j)
                    else:
                        dupes.append(j)
        if dupes:
            assumptions_dict[i[get_keyword_value("id")]] = {}
            assumptions_dict[i[get_keyword_value("id")]][get_keyword_value(
                "dupes")] = dupes

        if len(checklist) != 0:
            assumptions_dict[i[get_keyword_value("id")]] = {}
            assumptions_dict[i[get_keyword_value("id")]][get_keyword_value(
                "assumed")] = checklist.copy()

    if not assumptions_dict:
        return {service_key: get_keyword_value("no_assumptions")}

    return {service_key: assumptions_dict}
コード例 #3
0
def calculate_weighted_scores(param):
    """
    A function to get the weighted score of each student:
    For each student, it gets the weight of every item
    they got correct by getting its difficulty and dividing
    it by the sum of all items' difficulties.

    :param: a json in the Reliabilty Measures
            standard json format
    :return: a dictionary of floats: a dictionary with
             student ids as keys and their weighted score 
             as values
    """
    service_key = get_service_config(7)
    catch_error = get_error(param)
    if catch_error[0]:
        return {service_key: catch_error[1]}
    inp = update_input(param)
    student_ids = get_student_ids(inp)
    sorted_resp = get_sorted_responses(inp)
    scoring_method = get_scoring_method(inp)
    num_items = len(sorted_resp[0])
    difficulty_list = list(
        list(calculate_difficulty(inp).values())[0].values())
    difficulty_sum = sum(difficulty_list)
    weighted_scores_dict = {}

    for curr_id in student_ids:
        weighted_scores_dict[curr_id] = None

    j = 0
    for i in weighted_scores_dict:
        weighted = 0
        for k in range(0, num_items):
            if sorted_resp[j][k] == 1:
                weighted += difficulty_list[k]
        weighted /= difficulty_sum
        if scoring_method[0] == get_keyword_value("percentage"):
            weighted = round(weighted * 100, 3)
        elif scoring_method[0] == get_keyword_value("absolute"):
            weighted = round(weighted * num_items, 3)
        elif scoring_method[0] == get_keyword_value("scaled"):
            weighted = round(weighted * scoring_method[1], 3)
        else:
            weighted = round(weighted, 3)
        weighted_scores_dict[i] = weighted
        j += 1

    return {service_key: weighted_scores_dict}
コード例 #4
0
def calculate_topic_rights(param):
    """
    A function to calculate the number of
    correct responses in every topic for each
    student:
    It gets a list of every topic with its
    corresponding item id. If a student gets
    that item correct, then the number of right
    responses for that topic increases.

    :param: a json in the Reliability Measures
            standard json format
    :return: a dictionary of dictionaries:
             a dictionary with student ids as keys
             and a list of topics and their number
             of right responses
    """
    service_key = get_service_config(15)
    catch_error = get_error(param)
    if catch_error[0]:
        return {service_key: catch_error[1]}
    inp = update_input(param)
    student_list = get_student_list(inp)
    check_topics = get_item_topics(inp)
    topic_rights = {}

    if check_topics == get_keyword_value("no_topics"):
        return {service_key: get_keyword_value("no_topics")}

    for i in student_list:
        topic_trees = get_item_topics(inp)
        stud_id = i[get_keyword_value("id")]
        responses = i[get_keyword_value("item_responses")]
        for k in responses:
            item_id = k[get_keyword_value("item_id")]
            item_resp = k[get_keyword_value("response")]
            for j in range(0, len(topic_trees)):
                topic_ids = topic_trees[j][get_keyword_value("topic_ids")]
                if item_resp == 1 and item_id in topic_ids:
                    topic_trees[j][get_keyword_value("topic_rights")] += 1

        for k in range(0, len(topic_trees)):
            del topic_trees[k][get_keyword_value("topic_ids")]

        topic_rights[stud_id] = topic_trees

    return {service_key: topic_rights}
コード例 #5
0
def analyze_test(param):
    """
    A function to get an exam's analysis:
    It calls every service used to analyze
    an exam and then returns the analysis.

    :param: a json in the Reliabilty Measures
            standard json format
    :return: a dictionary of dictionaries:
             a dictionary with the results
             of the services as values
    """
    service_key = get_service_config(6)
    catch_error = get_error(param)
    if catch_error[0]:
        return {service_key: catch_error[1]}
    inp = update_input(param)
    # use microservice calls here when all are hosted
    val_kr20 = calculate_kr20(inp)
    val_idr = calculate_idr(inp)
    val_difficulty = calculate_difficulty(inp)
    val_scores = calculate_scores(inp)
    val_average = calculate_average(inp)
    val_weighted_s = calculate_weighted_scores(inp)
    val_weighted_avg = calculate_weighted_average(inp)
    val_excludes = get_exclude_recos(inp)
    val_diff_avg = calculate_difficulty_average(inp)
    val_idr_avg = calculate_idr_average(inp)
    val_num_correct = calculate_num_correct(inp)
    val_assumptions = get_assumptions(inp)
    val_topic_rights = calculate_topic_rights(inp)
    val_topic_avgs = calculate_topic_averages(inp)
    val_group_analysis = analyze_groups(inp)

    # join all results
    result = {}
    items = [
        val_kr20, val_idr, val_difficulty, val_scores, val_average,
        val_weighted_s, val_weighted_avg, val_excludes, val_diff_avg,
        val_idr_avg, val_num_correct, val_assumptions, val_topic_rights,
        val_group_analysis, val_topic_avgs
    ]
    for item in items:
        result.update(item)

    return {service_key: result}
コード例 #6
0
ファイル: scores.py プロジェクト: matbjr/flask_microservice
def calculate_scores(param):
    """
    A function to get the score of each student:
    For each student, it gets the number of correct
    responses and divides it by the number of questions.

    :param: a json in the Reliability Measures
            standard json format
    :return: a dictionary of floats: a dictionary with
             student ids as keys and their score as values
    """
    service_key = get_service_config(4)
    catch_error = get_error(param)
    if catch_error[0]:
        return {service_key: catch_error[1]}
    inp = update_input(param)
    sorted_resp = get_sorted_responses(inp)
    student_ids = get_student_ids(inp)
    scoring_method = get_scoring_method(inp)
    num_items = len(sorted_resp[0])
    score_dict = {}

    for curr_id in student_ids:
        score_dict[curr_id] = None

    k = 0
    for i in score_dict:
        num_right = sum(sorted_resp[k])
        score = num_right / num_items
        if scoring_method[0] == get_keyword_value("percentage"):
            score = round(score * 100, 3)
        elif scoring_method[0] == get_keyword_value("absolute"):
            score = round(score * num_items, 3)
        elif scoring_method[0] == get_keyword_value("scaled"):
            score = round(score * scoring_method[1], 3)
        else:
            score = round(score, 3)
        score_dict[i] = score
        k += 1

    return {service_key: score_dict}
コード例 #7
0
ファイル: kr20.py プロジェクト: matbjr/flask_microservice
def calculate_kr20(param):
    """
    A function to get the kr20 value of an exam:
    First it get the number of items divided by the
    number of items - 1. Then it multiplies that by 
    1 - the summation of the product of the 
    proportion of those who got an item right by the
    proportion of those who got it wrong divided by the
    variance of the students' scores.

    :param: a json in the Reliabilty Measures
            standard json format
    :return: a float: the kr20
    """
    service_key = get_service_config(1)
    catch_error = get_error(param)
    if catch_error[0]:
        return {service_key: catch_error[1]}
    inp = update_input(param)
    sorted_resp = get_sorted_responses(inp)
    num_students = len(sorted_resp)
    num_items = len (sorted_resp[0])
    pq_list = []
    score_std = get_score_std(inp)

    if score_std <= 0:
        return {service_key: get_keyword_value("bad_std")}

    for i in range(0, num_items):
        p = 0
        for k in range(0, num_students):
            p += sorted_resp[k][i]
        p /= num_students
        q = 1 - p
        pq_list.append(p * q)
    pq_sum = sum(pq_list)

    kr20_value = (num_items /(num_items - 1)) * (1 - (pq_sum / (score_std ** 2)))
    kr20_value = round(kr20_value, 3)

    return {service_key: kr20_value}
コード例 #8
0
def calculate_difficulty(param):
    """
    A function to get the difficulty of 
    each item on the exam:
    It calculates how many students got an
    item correct, and then divides it by
    the total number of students.

    :param: a json in the Reliabilty Measures
            standard json format
    :return: a dictionary of floats: a dictionary
             with item ids as keys and the
             difficulty as values
    """
    service_key = get_service_config(3)
    catch_error = get_error(param)
    if catch_error[0]:
        return {service_key: catch_error[1]}
    inp = update_input(param)
    sorted_resp = get_sorted_responses(inp)
    num_students = len(sorted_resp)
    num_items = len(sorted_resp[0])
    id_list = get_item_ids(inp)
    difficulty_list = []
    difficulty_dict = {}

    for i in range(0, num_items):  # For each question i
        numRight = 0
        for k in range(0, num_students):  # For each student k
            studentAnswer = sorted_resp[k][i]
            numRight += studentAnswer
        difficulty = 1 - numRight / num_students
        difficulty = round(difficulty, 3)
        difficulty_list.append(difficulty)

    k = 0
    for i in id_list:
        difficulty_dict[i] = difficulty_list[k]
        k += 1

    return {service_key: difficulty_dict}
コード例 #9
0
def calculate_topic_averages(param):
    """
    A function to calculate the average number of
    correct responses in every topic:
    It gets the total number of right responses
    per topic and then divides them by the total
    number of students.

    :param: a json in the Reliability Measures
            standard json format
    :return: a list of dictionaries, a list of
             each topic and its average number
             of right responses
    """
    service_key = get_service_config(16)
    catch_error = get_error(param)
    if catch_error[0]:
        return {service_key: catch_error[1]}
    inp = update_input(param)
    topic_avgs = get_item_topics(inp)
    topic_responses = calculate_topic_rights(inp)[get_service_config(15)]
    num_topics = len(topic_avgs)
    num_students = len(topic_responses)
    check_topics = get_item_topics(inp)

    if check_topics == get_keyword_value("no_topics"):
        return {service_key: get_keyword_value("no_topics")}

    for i in range(0, num_topics):
        avg_rights = 0
        for k in topic_responses:
            rights = topic_responses[k][i][get_keyword_value("topic_rights")]
            avg_rights += rights
        avg_rights /= num_students
        avg_rights = round(avg_rights, 3)
        topic_avgs[i][get_keyword_value("topic_rights")] = avg_rights

    for i in range(0, num_topics):
        del topic_avgs[i][get_keyword_value("topic_ids")]

    return {service_key: topic_avgs}
コード例 #10
0
def calculate_difficulty_average(param):
    """
    A function to get the average difficulty
    of items on the exam:
    It gets the difficulty of every item and then 
    calculates the average of those difficulties.

    :param: a json in the Reliabilty Measures
            standard json format
    :return: a float: the difficulty average
    """
    service_key = get_service_config(10)
    catch_error = get_error(param)
    if catch_error[0]:
        return {service_key: catch_error[1]}
    inp = update_input(param)
    diff_list = list(list(calculate_difficulty(inp).values())[0].values())
    num_items = len(diff_list)
    diff_avg = sum(diff_list) / num_items
    diff_avg = round(diff_avg, 3)

    return {service_key: diff_avg}
コード例 #11
0
ファイル: excludes.py プロジェクト: matbjr/flask_microservice
def get_exclude_recos(param):
    """
    A function to get a recommendation of
    items to exclude from the exam based on
    their idr values:
    It get every item's idr, and if it's less than
    0.09, it adds it to the exclude recommendations.
    If the number of recommendations is greater
    than half the number of items, only recommend
    items with idr values less than 0.

    :param: a json in the Reliabilty Measures
            standard json format
    :return: a list of strings: a list of item ids
    """
    service_key = get_service_config(9)
    catch_error = get_error(param)
    if catch_error[0]:
        return {service_key: catch_error[1]}
    inp = update_input(param)
    idr_dict = list(calculate_idr(inp).values())[0]
    if idr_dict == get_keyword_value("bad_mean"):
        return {service_key: get_keyword_value("bad_mean")}
    exclude_list = []
    for i in idr_dict:
        if idr_dict[i] <= get_keyword_value("exclude_threshold_1"):
            exclude_list.append(i)
    
    if len(exclude_list) >= len(idr_dict)*get_keyword_value("exclude_length_1"):
        exclude_list = []
        for i in idr_dict:
            if idr_dict[i] < get_keyword_value("exclude_threshold_2"):
                exclude_list.append(i)
    
    # if len(exclude_list) >= len(idr_dict)*get_keyword_value("exclude_length_2"):
    #     return {service_key: get_keyword_value("bad_exam")}
        
    return {service_key: exclude_list}
コード例 #12
0
ファイル: scores.py プロジェクト: matbjr/flask_microservice
def calculate_average(param):
    """
    A function to get the average score of
    the students:
    It gets every students score and then
    calculates the average of those scores.

    :param: a json in the Reliability Measures
            standard json format
    :return: a float: the score average
    """
    service_key = get_service_config(5)
    catch_error = get_error(param)
    if catch_error[0]:
        return {service_key: catch_error[1]}
    inp = update_input(param)
    score_list = list(list(calculate_scores(inp).values())[0].values())
    num_students = len(score_list)

    average = sum(score_list) / num_students
    average = round(average, 3)

    return {service_key: average}
コード例 #13
0
def analyze_groups(param):
    """
    A function to get an exam's analysis by 
    students' group:
    It groups all students by group and 
    then iterates over the groups, calling
    every service used to analyze an exam. 

    :param: a json in the Reliabilty Measures
            standard json format
    :return: a dictionary of nested dictionaries:
             a dictionary with groups as
             keys and the exam analysis as values
    """
    service_key = get_service_config(14)
    catch_error = get_error(param)
    if catch_error[0]:
        return {service_key: catch_error[1]}
    inp = update_input(param)
    assumptions_key = get_service_config(13)
    assumptions = get_assumptions(inp)[assumptions_key]
    students_dict = sort_students_by_group(inp)
    group_list = get_group_list(inp)
    group_analysis = {}

    if group_list == get_keyword_value("no_group"):
        return {service_key: get_keyword_value("no_group")}

    for i in students_dict:
        curr_students = students_dict[i]
        catch_error = get_error(curr_students)
        if catch_error[0]:
            group_analysis[i] = catch_error[1]
            continue
        student_list = get_student_list(curr_students)

        val_kr20 = calculate_kr20(curr_students)
        val_idr = calculate_idr(curr_students)
        val_difficulty = calculate_difficulty(curr_students)
        val_scores = calculate_scores(curr_students)
        val_average = calculate_average(curr_students)
        val_weighted_s = calculate_weighted_scores(curr_students)
        val_weighted_avg = calculate_weighted_average(curr_students)
        val_excludes = get_exclude_recos(curr_students)
        val_diff_avg = calculate_difficulty_average(curr_students)
        val_idr_avg = calculate_idr_average(curr_students)
        val_num_correct = calculate_num_correct(curr_students)
        val_topic_rights = calculate_topic_rights(curr_students)
        val_topic_avgs = calculate_topic_averages(curr_students)

        curr_assumptions = {}
        for k in assumptions:
            for j in student_list:
                if k == j[get_keyword_value("id")]:
                    curr_assumptions[k] = assumptions[k]
        val_assumptions = {assumptions_key: curr_assumptions}

        result = {
            'overall_quiz': {
                'average': val_average['average'],
                'kr20': val_kr20['kr20'],
                'weighted_avg': val_weighted_avg['weighted_avg']
            },
            'overall_items': {
                'diff_avg': val_diff_avg['diff_avg'],
                'idr_avg': val_idr_avg['idr_avg']
            },
            'item_analysis': [],
            'student_scores': []
        }

        for k in val_difficulty['difficulty']:
            curr_idr = val_idr['idr']
            if curr_idr is not str:
                curr_idr = val_idr['idr'][k]
            result['item_analysis'].append({
                'item_id':
                k,
                'difficulty':
                val_difficulty['difficulty'][k],
                'idr':
                curr_idr,
                'num_correct':
                val_num_correct['num_correct'][k]
            })

        for k in val_scores['scores']:
            result['student_scores'].append({
                'student':
                k,
                'score':
                val_scores['scores'][k],
                'weighted_score':
                val_weighted_s['weighted_scores'][k]
            })

        items = [
            val_excludes, val_assumptions, val_topic_rights, val_topic_avgs
        ]
        for item in items:
            result.update(item)

        group_analysis[i] = result

    return {service_key: group_analysis}
コード例 #14
0
ファイル: idr.py プロジェクト: matbjr/flask_microservice
def calculate_idr(param):
    """
    A function to get the idr of each item:
    For every item, it calculates the mean score
    of students who got the answer right and subtracts
    it by the mean score of those who got it wrong.
    Then it multiplies that by the square root of 
    the number of students who got the item right
    multiplied by the total of those who got it wrong.
    Then it divides that by the number of students
    multiplied by the std of the students' scores.

    :param: a json in the Reliabilty Measures
            standard json format
    :return: a dictionary of floats: a dictionary with
             item ids as keys and idr as values
    """
    service_key = get_service_config(2)
    catch_error = get_error(param)
    if catch_error[0]:
        return {service_key: catch_error[1]}
    inp = update_input(param)
    sorted_resp = get_sorted_responses(inp)
    num_students = len(sorted_resp)
    num_items = len(sorted_resp[0])
    id_list = get_item_ids(inp)
    score_std = get_score_std(inp)
    idr_list = []
    idr_dict = {}

    if score_std < 0:
        return {service_key: get_keyword_value("bad_std")}

    for i in range(0, num_items):  # For each question i
        right_list = []
        wrong_list = []
        num_right = 0
        num_wrong = 0
        for k in range(0, num_students):  # For each student k
            if sorted_resp[k][i] == 1:  # If student k gets question i correct
                score = sum(sorted_resp[k]) / num_items
                right_list.append(
                    score)  # Then add their score to the "right" list
                num_right += 1
            elif sorted_resp[k][i] == 0:  # If student k gets question i wrong
                score = sum(sorted_resp[k]) / num_items
                wrong_list.append(
                    score)  # Then add their score to the "wrong" list
                num_wrong += 1

        if num_right == num_students or num_wrong == num_students:
            idr_list.append(0)
            continue
        if len(right_list) == 1:
            right_mean = right_list[0]
        elif len(right_list) > 1:
            right_mean = mean(right_list)
        if len(wrong_list) == 1:
            wrong_mean = wrong_list[0]
        elif len(wrong_list) > 1:
            wrong_mean = mean(wrong_list)
        if not right_mean or not wrong_mean:
            return {service_key: get_keyword_value("bad_mean")}

        idr = ((right_mean - wrong_mean) *
               sqrt(num_right * num_wrong)) / num_students * score_std
        idr = round(idr, 3)
        idr_list.append(idr)

    k = 0
    for i in id_list:
        idr_dict[i] = idr_list[k]
        k += 1

    return {service_key: idr_dict}
コード例 #15
0
    def test_update_input(self):
        data = {
            "student_list": [{
                "item_responses": [
                    {
                        "response": 1
                    },
                    {
                        "response": 0
                    },
                ]
            }, {
                "item_responses": [
                    {
                        "response": 1
                    },
                    {
                        "response": 0
                    },
                ]
            }]
        }

        expected = {
            "exam": {
                "name": "unknown",
                "scoring_method": "unknown"
            },
            "student_list": [{
                "group": ["unknown"],
                "id":
                "1",
                "item_responses": [
                    {
                        "item_id": "1",
                        "response": 1
                    },
                    {
                        "item_id": "2",
                        "response": 0
                    },
                ]
            }, {
                "group": ["unknown"],
                "id":
                "2",
                "item_responses": [
                    {
                        "item_id": "1",
                        "response": 1
                    },
                    {
                        "item_id": "2",
                        "response": 0
                    },
                ]
            }]
        }
        updated = utils.update_input(data)

        assert updated == expected
コード例 #16
0
def analyze_test(param):
    """
    A function to get an exam's analysis:
    It calls every service used to analyze
    an exam and then returns the analysis.

    :param: a json in the Reliabilty Measures
            standard json format
    :return: a dictionary of dictionaries:
             a dictionary with the results
             of the services as values
    """
    service_key = get_service_config(6)
    catch_error = get_error(param)
    if catch_error[0]:
        return {service_key: catch_error[1]}
    inp = update_input(param)
    # use microservice calls here when all are hosted
    val_kr20 = calculate_kr20(inp)
    val_idr = calculate_idr(inp)
    val_difficulty = calculate_difficulty(inp)
    val_scores = calculate_scores(inp)
    val_average = calculate_average(inp)
    val_weighted_s = calculate_weighted_scores(inp)
    val_weighted_avg = calculate_weighted_average(inp)
    val_excludes = get_exclude_recos(inp)
    val_diff_avg = calculate_difficulty_average(inp)
    val_idr_avg = calculate_idr_average(inp)
    val_num_correct = calculate_num_correct(inp)
    val_assumptions = get_assumptions(inp)
    val_topic_rights = calculate_topic_rights(inp)
    val_topic_avgs = calculate_topic_averages(inp)
    val_group_analysis = analyze_groups(inp)

    # join all results
    result = {
        'overall_quiz': {
            'average': val_average['average'],
            'kr20': val_kr20['kr20'],
            'weighted_avg': val_weighted_avg['weighted_avg']
        },
        'overall_items': {
            'diff_avg': val_diff_avg['diff_avg'],
            'idr_avg': val_idr_avg['idr_avg']
        },
        'item_analysis': [],
        'student_scores': []
    }

    for i in val_difficulty['difficulty']:
        curr_idr = val_idr['idr']
        if type(curr_idr) is not str:
            curr_idr = val_idr['idr'][i]
        result['item_analysis'].append({
            'item_id':
            i,
            'difficulty':
            val_difficulty['difficulty'][i],
            'idr':
            curr_idr,
            'num_correct':
            val_num_correct['num_correct'][i]
        })

    for i in val_scores['scores']:
        result['student_scores'].append({
            'student':
            i,
            'score':
            val_scores['scores'][i],
            'weighted_score':
            val_weighted_s['weighted_scores'][i]
        })

    items = [
        val_excludes, val_assumptions, val_topic_rights, val_group_analysis,
        val_topic_avgs
    ]
    for item in items:
        result.update(item)

    return {service_key: result}