def calculate_idr_average(param): """ A function to get the average idr of the items: It gets a list of each item's idr, and then calculates the average. :param: a json in the Reliabilty Measures standard json format :return: a float: the average idr """ service_key = get_service_config(11) catch_error = get_error(param) if catch_error[0]: return {service_key: catch_error[1]} inp = update_input(param) idr_dict = list(calculate_idr(inp).values())[0] if idr_dict == get_keyword_value("bad_mean"): return {service_key: get_keyword_value("bad_mean")} idr_list = list(list(idr_dict.values())) num_items = len(idr_list) idr_avg = sum(idr_list) / num_items idr_avg = round(idr_avg, 3) return {service_key: idr_avg}
def get_assumptions(param): """ A function to get the items for which a student was assumed to have a response of 0: It gets a list of all item ids listed from every student's responses, then iterates through every student. If a student doesn't have a response for an item in the id list, then that item is assumed to have a response of 0 for that student. :param: a json in the Reliabilty Measures standard json format :return: a dictionary of dictionaries: a dictionary with student ids as keys and a list of item ids as values """ service_key = get_service_config(13) catch_error = get_error(param) if catch_error[0]: return {service_key: catch_error[1]} inp = update_input(param) student_list = get_student_list(inp) id_list = get_item_ids(inp) assumptions_dict = {} for i in student_list: # For each student i checklist = id_list.copy() dupes = [] for k in i[get_keyword_value("item_responses")]: # For each question k for j in id_list: # For each item ID j if k[get_keyword_value("item_id")] == j: # If item IDs match if j in checklist: checklist.remove(j) else: dupes.append(j) if dupes: assumptions_dict[i[get_keyword_value("id")]] = {} assumptions_dict[i[get_keyword_value("id")]][get_keyword_value( "dupes")] = dupes if len(checklist) != 0: assumptions_dict[i[get_keyword_value("id")]] = {} assumptions_dict[i[get_keyword_value("id")]][get_keyword_value( "assumed")] = checklist.copy() if not assumptions_dict: return {service_key: get_keyword_value("no_assumptions")} return {service_key: assumptions_dict}
def calculate_weighted_scores(param): """ A function to get the weighted score of each student: For each student, it gets the weight of every item they got correct by getting its difficulty and dividing it by the sum of all items' difficulties. :param: a json in the Reliabilty Measures standard json format :return: a dictionary of floats: a dictionary with student ids as keys and their weighted score as values """ service_key = get_service_config(7) catch_error = get_error(param) if catch_error[0]: return {service_key: catch_error[1]} inp = update_input(param) student_ids = get_student_ids(inp) sorted_resp = get_sorted_responses(inp) scoring_method = get_scoring_method(inp) num_items = len(sorted_resp[0]) difficulty_list = list( list(calculate_difficulty(inp).values())[0].values()) difficulty_sum = sum(difficulty_list) weighted_scores_dict = {} for curr_id in student_ids: weighted_scores_dict[curr_id] = None j = 0 for i in weighted_scores_dict: weighted = 0 for k in range(0, num_items): if sorted_resp[j][k] == 1: weighted += difficulty_list[k] weighted /= difficulty_sum if scoring_method[0] == get_keyword_value("percentage"): weighted = round(weighted * 100, 3) elif scoring_method[0] == get_keyword_value("absolute"): weighted = round(weighted * num_items, 3) elif scoring_method[0] == get_keyword_value("scaled"): weighted = round(weighted * scoring_method[1], 3) else: weighted = round(weighted, 3) weighted_scores_dict[i] = weighted j += 1 return {service_key: weighted_scores_dict}
def calculate_topic_rights(param): """ A function to calculate the number of correct responses in every topic for each student: It gets a list of every topic with its corresponding item id. If a student gets that item correct, then the number of right responses for that topic increases. :param: a json in the Reliability Measures standard json format :return: a dictionary of dictionaries: a dictionary with student ids as keys and a list of topics and their number of right responses """ service_key = get_service_config(15) catch_error = get_error(param) if catch_error[0]: return {service_key: catch_error[1]} inp = update_input(param) student_list = get_student_list(inp) check_topics = get_item_topics(inp) topic_rights = {} if check_topics == get_keyword_value("no_topics"): return {service_key: get_keyword_value("no_topics")} for i in student_list: topic_trees = get_item_topics(inp) stud_id = i[get_keyword_value("id")] responses = i[get_keyword_value("item_responses")] for k in responses: item_id = k[get_keyword_value("item_id")] item_resp = k[get_keyword_value("response")] for j in range(0, len(topic_trees)): topic_ids = topic_trees[j][get_keyword_value("topic_ids")] if item_resp == 1 and item_id in topic_ids: topic_trees[j][get_keyword_value("topic_rights")] += 1 for k in range(0, len(topic_trees)): del topic_trees[k][get_keyword_value("topic_ids")] topic_rights[stud_id] = topic_trees return {service_key: topic_rights}
def analyze_test(param): """ A function to get an exam's analysis: It calls every service used to analyze an exam and then returns the analysis. :param: a json in the Reliabilty Measures standard json format :return: a dictionary of dictionaries: a dictionary with the results of the services as values """ service_key = get_service_config(6) catch_error = get_error(param) if catch_error[0]: return {service_key: catch_error[1]} inp = update_input(param) # use microservice calls here when all are hosted val_kr20 = calculate_kr20(inp) val_idr = calculate_idr(inp) val_difficulty = calculate_difficulty(inp) val_scores = calculate_scores(inp) val_average = calculate_average(inp) val_weighted_s = calculate_weighted_scores(inp) val_weighted_avg = calculate_weighted_average(inp) val_excludes = get_exclude_recos(inp) val_diff_avg = calculate_difficulty_average(inp) val_idr_avg = calculate_idr_average(inp) val_num_correct = calculate_num_correct(inp) val_assumptions = get_assumptions(inp) val_topic_rights = calculate_topic_rights(inp) val_topic_avgs = calculate_topic_averages(inp) val_group_analysis = analyze_groups(inp) # join all results result = {} items = [ val_kr20, val_idr, val_difficulty, val_scores, val_average, val_weighted_s, val_weighted_avg, val_excludes, val_diff_avg, val_idr_avg, val_num_correct, val_assumptions, val_topic_rights, val_group_analysis, val_topic_avgs ] for item in items: result.update(item) return {service_key: result}
def calculate_scores(param): """ A function to get the score of each student: For each student, it gets the number of correct responses and divides it by the number of questions. :param: a json in the Reliability Measures standard json format :return: a dictionary of floats: a dictionary with student ids as keys and their score as values """ service_key = get_service_config(4) catch_error = get_error(param) if catch_error[0]: return {service_key: catch_error[1]} inp = update_input(param) sorted_resp = get_sorted_responses(inp) student_ids = get_student_ids(inp) scoring_method = get_scoring_method(inp) num_items = len(sorted_resp[0]) score_dict = {} for curr_id in student_ids: score_dict[curr_id] = None k = 0 for i in score_dict: num_right = sum(sorted_resp[k]) score = num_right / num_items if scoring_method[0] == get_keyword_value("percentage"): score = round(score * 100, 3) elif scoring_method[0] == get_keyword_value("absolute"): score = round(score * num_items, 3) elif scoring_method[0] == get_keyword_value("scaled"): score = round(score * scoring_method[1], 3) else: score = round(score, 3) score_dict[i] = score k += 1 return {service_key: score_dict}
def calculate_kr20(param): """ A function to get the kr20 value of an exam: First it get the number of items divided by the number of items - 1. Then it multiplies that by 1 - the summation of the product of the proportion of those who got an item right by the proportion of those who got it wrong divided by the variance of the students' scores. :param: a json in the Reliabilty Measures standard json format :return: a float: the kr20 """ service_key = get_service_config(1) catch_error = get_error(param) if catch_error[0]: return {service_key: catch_error[1]} inp = update_input(param) sorted_resp = get_sorted_responses(inp) num_students = len(sorted_resp) num_items = len (sorted_resp[0]) pq_list = [] score_std = get_score_std(inp) if score_std <= 0: return {service_key: get_keyword_value("bad_std")} for i in range(0, num_items): p = 0 for k in range(0, num_students): p += sorted_resp[k][i] p /= num_students q = 1 - p pq_list.append(p * q) pq_sum = sum(pq_list) kr20_value = (num_items /(num_items - 1)) * (1 - (pq_sum / (score_std ** 2))) kr20_value = round(kr20_value, 3) return {service_key: kr20_value}
def calculate_difficulty(param): """ A function to get the difficulty of each item on the exam: It calculates how many students got an item correct, and then divides it by the total number of students. :param: a json in the Reliabilty Measures standard json format :return: a dictionary of floats: a dictionary with item ids as keys and the difficulty as values """ service_key = get_service_config(3) catch_error = get_error(param) if catch_error[0]: return {service_key: catch_error[1]} inp = update_input(param) sorted_resp = get_sorted_responses(inp) num_students = len(sorted_resp) num_items = len(sorted_resp[0]) id_list = get_item_ids(inp) difficulty_list = [] difficulty_dict = {} for i in range(0, num_items): # For each question i numRight = 0 for k in range(0, num_students): # For each student k studentAnswer = sorted_resp[k][i] numRight += studentAnswer difficulty = 1 - numRight / num_students difficulty = round(difficulty, 3) difficulty_list.append(difficulty) k = 0 for i in id_list: difficulty_dict[i] = difficulty_list[k] k += 1 return {service_key: difficulty_dict}
def calculate_topic_averages(param): """ A function to calculate the average number of correct responses in every topic: It gets the total number of right responses per topic and then divides them by the total number of students. :param: a json in the Reliability Measures standard json format :return: a list of dictionaries, a list of each topic and its average number of right responses """ service_key = get_service_config(16) catch_error = get_error(param) if catch_error[0]: return {service_key: catch_error[1]} inp = update_input(param) topic_avgs = get_item_topics(inp) topic_responses = calculate_topic_rights(inp)[get_service_config(15)] num_topics = len(topic_avgs) num_students = len(topic_responses) check_topics = get_item_topics(inp) if check_topics == get_keyword_value("no_topics"): return {service_key: get_keyword_value("no_topics")} for i in range(0, num_topics): avg_rights = 0 for k in topic_responses: rights = topic_responses[k][i][get_keyword_value("topic_rights")] avg_rights += rights avg_rights /= num_students avg_rights = round(avg_rights, 3) topic_avgs[i][get_keyword_value("topic_rights")] = avg_rights for i in range(0, num_topics): del topic_avgs[i][get_keyword_value("topic_ids")] return {service_key: topic_avgs}
def calculate_difficulty_average(param): """ A function to get the average difficulty of items on the exam: It gets the difficulty of every item and then calculates the average of those difficulties. :param: a json in the Reliabilty Measures standard json format :return: a float: the difficulty average """ service_key = get_service_config(10) catch_error = get_error(param) if catch_error[0]: return {service_key: catch_error[1]} inp = update_input(param) diff_list = list(list(calculate_difficulty(inp).values())[0].values()) num_items = len(diff_list) diff_avg = sum(diff_list) / num_items diff_avg = round(diff_avg, 3) return {service_key: diff_avg}
def get_exclude_recos(param): """ A function to get a recommendation of items to exclude from the exam based on their idr values: It get every item's idr, and if it's less than 0.09, it adds it to the exclude recommendations. If the number of recommendations is greater than half the number of items, only recommend items with idr values less than 0. :param: a json in the Reliabilty Measures standard json format :return: a list of strings: a list of item ids """ service_key = get_service_config(9) catch_error = get_error(param) if catch_error[0]: return {service_key: catch_error[1]} inp = update_input(param) idr_dict = list(calculate_idr(inp).values())[0] if idr_dict == get_keyword_value("bad_mean"): return {service_key: get_keyword_value("bad_mean")} exclude_list = [] for i in idr_dict: if idr_dict[i] <= get_keyword_value("exclude_threshold_1"): exclude_list.append(i) if len(exclude_list) >= len(idr_dict)*get_keyword_value("exclude_length_1"): exclude_list = [] for i in idr_dict: if idr_dict[i] < get_keyword_value("exclude_threshold_2"): exclude_list.append(i) # if len(exclude_list) >= len(idr_dict)*get_keyword_value("exclude_length_2"): # return {service_key: get_keyword_value("bad_exam")} return {service_key: exclude_list}
def calculate_average(param): """ A function to get the average score of the students: It gets every students score and then calculates the average of those scores. :param: a json in the Reliability Measures standard json format :return: a float: the score average """ service_key = get_service_config(5) catch_error = get_error(param) if catch_error[0]: return {service_key: catch_error[1]} inp = update_input(param) score_list = list(list(calculate_scores(inp).values())[0].values()) num_students = len(score_list) average = sum(score_list) / num_students average = round(average, 3) return {service_key: average}
def analyze_groups(param): """ A function to get an exam's analysis by students' group: It groups all students by group and then iterates over the groups, calling every service used to analyze an exam. :param: a json in the Reliabilty Measures standard json format :return: a dictionary of nested dictionaries: a dictionary with groups as keys and the exam analysis as values """ service_key = get_service_config(14) catch_error = get_error(param) if catch_error[0]: return {service_key: catch_error[1]} inp = update_input(param) assumptions_key = get_service_config(13) assumptions = get_assumptions(inp)[assumptions_key] students_dict = sort_students_by_group(inp) group_list = get_group_list(inp) group_analysis = {} if group_list == get_keyword_value("no_group"): return {service_key: get_keyword_value("no_group")} for i in students_dict: curr_students = students_dict[i] catch_error = get_error(curr_students) if catch_error[0]: group_analysis[i] = catch_error[1] continue student_list = get_student_list(curr_students) val_kr20 = calculate_kr20(curr_students) val_idr = calculate_idr(curr_students) val_difficulty = calculate_difficulty(curr_students) val_scores = calculate_scores(curr_students) val_average = calculate_average(curr_students) val_weighted_s = calculate_weighted_scores(curr_students) val_weighted_avg = calculate_weighted_average(curr_students) val_excludes = get_exclude_recos(curr_students) val_diff_avg = calculate_difficulty_average(curr_students) val_idr_avg = calculate_idr_average(curr_students) val_num_correct = calculate_num_correct(curr_students) val_topic_rights = calculate_topic_rights(curr_students) val_topic_avgs = calculate_topic_averages(curr_students) curr_assumptions = {} for k in assumptions: for j in student_list: if k == j[get_keyword_value("id")]: curr_assumptions[k] = assumptions[k] val_assumptions = {assumptions_key: curr_assumptions} result = { 'overall_quiz': { 'average': val_average['average'], 'kr20': val_kr20['kr20'], 'weighted_avg': val_weighted_avg['weighted_avg'] }, 'overall_items': { 'diff_avg': val_diff_avg['diff_avg'], 'idr_avg': val_idr_avg['idr_avg'] }, 'item_analysis': [], 'student_scores': [] } for k in val_difficulty['difficulty']: curr_idr = val_idr['idr'] if curr_idr is not str: curr_idr = val_idr['idr'][k] result['item_analysis'].append({ 'item_id': k, 'difficulty': val_difficulty['difficulty'][k], 'idr': curr_idr, 'num_correct': val_num_correct['num_correct'][k] }) for k in val_scores['scores']: result['student_scores'].append({ 'student': k, 'score': val_scores['scores'][k], 'weighted_score': val_weighted_s['weighted_scores'][k] }) items = [ val_excludes, val_assumptions, val_topic_rights, val_topic_avgs ] for item in items: result.update(item) group_analysis[i] = result return {service_key: group_analysis}
def calculate_idr(param): """ A function to get the idr of each item: For every item, it calculates the mean score of students who got the answer right and subtracts it by the mean score of those who got it wrong. Then it multiplies that by the square root of the number of students who got the item right multiplied by the total of those who got it wrong. Then it divides that by the number of students multiplied by the std of the students' scores. :param: a json in the Reliabilty Measures standard json format :return: a dictionary of floats: a dictionary with item ids as keys and idr as values """ service_key = get_service_config(2) catch_error = get_error(param) if catch_error[0]: return {service_key: catch_error[1]} inp = update_input(param) sorted_resp = get_sorted_responses(inp) num_students = len(sorted_resp) num_items = len(sorted_resp[0]) id_list = get_item_ids(inp) score_std = get_score_std(inp) idr_list = [] idr_dict = {} if score_std < 0: return {service_key: get_keyword_value("bad_std")} for i in range(0, num_items): # For each question i right_list = [] wrong_list = [] num_right = 0 num_wrong = 0 for k in range(0, num_students): # For each student k if sorted_resp[k][i] == 1: # If student k gets question i correct score = sum(sorted_resp[k]) / num_items right_list.append( score) # Then add their score to the "right" list num_right += 1 elif sorted_resp[k][i] == 0: # If student k gets question i wrong score = sum(sorted_resp[k]) / num_items wrong_list.append( score) # Then add their score to the "wrong" list num_wrong += 1 if num_right == num_students or num_wrong == num_students: idr_list.append(0) continue if len(right_list) == 1: right_mean = right_list[0] elif len(right_list) > 1: right_mean = mean(right_list) if len(wrong_list) == 1: wrong_mean = wrong_list[0] elif len(wrong_list) > 1: wrong_mean = mean(wrong_list) if not right_mean or not wrong_mean: return {service_key: get_keyword_value("bad_mean")} idr = ((right_mean - wrong_mean) * sqrt(num_right * num_wrong)) / num_students * score_std idr = round(idr, 3) idr_list.append(idr) k = 0 for i in id_list: idr_dict[i] = idr_list[k] k += 1 return {service_key: idr_dict}
def test_update_input(self): data = { "student_list": [{ "item_responses": [ { "response": 1 }, { "response": 0 }, ] }, { "item_responses": [ { "response": 1 }, { "response": 0 }, ] }] } expected = { "exam": { "name": "unknown", "scoring_method": "unknown" }, "student_list": [{ "group": ["unknown"], "id": "1", "item_responses": [ { "item_id": "1", "response": 1 }, { "item_id": "2", "response": 0 }, ] }, { "group": ["unknown"], "id": "2", "item_responses": [ { "item_id": "1", "response": 1 }, { "item_id": "2", "response": 0 }, ] }] } updated = utils.update_input(data) assert updated == expected
def analyze_test(param): """ A function to get an exam's analysis: It calls every service used to analyze an exam and then returns the analysis. :param: a json in the Reliabilty Measures standard json format :return: a dictionary of dictionaries: a dictionary with the results of the services as values """ service_key = get_service_config(6) catch_error = get_error(param) if catch_error[0]: return {service_key: catch_error[1]} inp = update_input(param) # use microservice calls here when all are hosted val_kr20 = calculate_kr20(inp) val_idr = calculate_idr(inp) val_difficulty = calculate_difficulty(inp) val_scores = calculate_scores(inp) val_average = calculate_average(inp) val_weighted_s = calculate_weighted_scores(inp) val_weighted_avg = calculate_weighted_average(inp) val_excludes = get_exclude_recos(inp) val_diff_avg = calculate_difficulty_average(inp) val_idr_avg = calculate_idr_average(inp) val_num_correct = calculate_num_correct(inp) val_assumptions = get_assumptions(inp) val_topic_rights = calculate_topic_rights(inp) val_topic_avgs = calculate_topic_averages(inp) val_group_analysis = analyze_groups(inp) # join all results result = { 'overall_quiz': { 'average': val_average['average'], 'kr20': val_kr20['kr20'], 'weighted_avg': val_weighted_avg['weighted_avg'] }, 'overall_items': { 'diff_avg': val_diff_avg['diff_avg'], 'idr_avg': val_idr_avg['idr_avg'] }, 'item_analysis': [], 'student_scores': [] } for i in val_difficulty['difficulty']: curr_idr = val_idr['idr'] if type(curr_idr) is not str: curr_idr = val_idr['idr'][i] result['item_analysis'].append({ 'item_id': i, 'difficulty': val_difficulty['difficulty'][i], 'idr': curr_idr, 'num_correct': val_num_correct['num_correct'][i] }) for i in val_scores['scores']: result['student_scores'].append({ 'student': i, 'score': val_scores['scores'][i], 'weighted_score': val_weighted_s['weighted_scores'][i] }) items = [ val_excludes, val_assumptions, val_topic_rights, val_group_analysis, val_topic_avgs ] for item in items: result.update(item) return {service_key: result}