コード例 #1
0
def visualizeMNSig():
    # some tests on the copula multinomial signature
    
    K = 4
    M = 1000
    N = 3
    tauVec = np.arange(-0.9,0.95,0.05)
    # the families to test against and pick optimal copula
    families = ['Gaussian', 'Clayton', 'Gumbel', 'Frank']
    
    helmAccuracyResults = testHELM_parametric(K,M,N,tauVec,families)
        
    resultsAggregate = {}
    
    for family in families:
        famResults = {}
        for tau in tauVec:
            mnsig = copulamnsig(family,K,'kendall',tau)
            famResults[tau] = mnsig
        resultsAggregate[family] = famResults

    # visualize the results
    for tau in tauVec:
        # we would also like to visualize this copula on the side, to try to 
        # understand what may be a better way todo model selection
        try:
            r = invcopulastat('Gaussian', 'kendall', tau)
        except ValueError:
            r = -1
        Rho = np.empty((N,N))
        for jj in range(0,N):
            for kk in range(0,N):
                if(jj==kk):
                    Rho[jj][kk] = 1
                else:
                    Rho[jj][kk] = r
        
        try:
            alpha_clayton = invcopulastat('Clayton', 'kendall', tau)
        except ValueError:
            alpha_clayton = -1
        
        try:
            alpha_gumbel  = invcopulastat('Gumbel', 'kendall', tau)
        except ValueError:
            alpha_gumbel = -1
            
        try:
            alpha_frank   = invcopulastat('Frank', 'kendall', tau)
        except ValueError:
            alpha_frank   = -1
        
        if(r!=-1):
            try:
                U_gauss   = copularnd('Gaussian', M, Rho)
            except ValueError:
                U_gauss   = np.zeros((M,N))
        if(alpha_clayton!=-1):
            try:
                U_clayton = copularnd('Clayton', M, N, alpha_clayton)
            except ValueError:
                U_clayton   = np.zeros((M,N))
        if(alpha_frank!=-1):
            try:
                U_frank   = copularnd('Frank', M, N, alpha_frank)
            except ValueError:
                U_frank   = np.zeros((M,N))
        if(alpha_gumbel!=-1):
            try:
                U_gumbel  = copularnd('Gumbel', M, N, alpha_gumbel)
            except ValueError:
                U_gumbel  = np.zeros((M,N))
        
        # get each family's MN signature and plot it
        plt.figure(figsize=(30,20))
        
        plt.subplot(231)
        if(np.sum(resultsAggregate['Gaussian'][tau])>0):
            plt.plot(np.arange(1,K*K+1), resultsAggregate['Gaussian'][tau], 'b.-', label='Gaussian Copula')
        if(np.sum(resultsAggregate['Clayton'][tau])>0):
            plt.plot(np.arange(1,K*K+1), resultsAggregate['Clayton'][tau], 'g.-', label='Clayton Copula')
        if(np.sum(resultsAggregate['Gumbel'][tau])>0):
            plt.plot(np.arange(1,K*K+1), resultsAggregate['Gumbel'][tau], 'r.-', label='Gumbel Copula')
        if(np.sum(resultsAggregate['Frank'][tau])>0):
            plt.plot(np.arange(1,K*K+1), resultsAggregate['Frank'][tau], 'k.-', label='Frank Copula')
        
        plt.title(r'Copula Multinomial Signature $\tau$=' + "{0:.2f}".format(tau) + ' K=' + str(K))
        plt.legend()
        plt.grid()
        
        plt.subplot(232)
        if(r!=-1):
            plt.scatter(U_gauss[:,0], U_gauss[:,1])
        plt.grid()
        plt.title(r'Gaussian Copula, $\rho$=' + "{0:.2f}".format(r) + r' $\tau$=' + "{0:.2f}".format(tau))
        
        plt.subplot(233)
        if(alpha_clayton!=-1):
            plt.scatter(U_clayton[:,0], U_clayton[:,1])
        plt.grid()
        plt.title(r'Clayton Copula, $\alpha$=' + "{0:.2f}".format(alpha_clayton) + r' $\tau$=' + "{0:.2f}".format(tau))
        
        plt.subplot(235)
        if(alpha_frank!=-1):
            plt.scatter(U_frank[:,0], U_frank[:,1])
        plt.grid()
        plt.title(r'Frank Copula, $\alpha$=' + "{0:.2f}".format(alpha_frank) + r' $\tau$=' + "{0:.2f}".format(tau))
        
        plt.subplot(236)
        if(alpha_gumbel!=-1):
            plt.scatter(U_gumbel[:,0], U_gumbel[:,1])
        plt.grid()
        plt.title(r'Gumbel Copula, $\alpha$=' + "{0:.2f}".format(alpha_gumbel) + r' $\tau$=' + "{0:.2f}".format(tau))
        
        plt.subplot(234)
        # index manually to ensure accuracy
        cla = np.array([helmAccuracyResults['Clayton'][tau]['clayton'],
                        helmAccuracyResults['Gaussian'][tau]['clayton'],
                        helmAccuracyResults['Gumbel'][tau]['clayton'],
                        helmAccuracyResults['Frank'][tau]['clayton']])
        gau = np.array([helmAccuracyResults['Clayton'][tau]['gaussian'],
                        helmAccuracyResults['Gaussian'][tau]['gaussian'],
                        helmAccuracyResults['Gumbel'][tau]['gaussian'],
                        helmAccuracyResults['Frank'][tau]['gaussian']])
        gum = np.array([helmAccuracyResults['Clayton'][tau]['gumbel'],
                        helmAccuracyResults['Gaussian'][tau]['gumbel'],
                        helmAccuracyResults['Gumbel'][tau]['gumbel'],
                        helmAccuracyResults['Frank'][tau]['gumbel']])
        fra = np.array([helmAccuracyResults['Clayton'][tau]['frank'],
                        helmAccuracyResults['Gaussian'][tau]['frank'],
                        helmAccuracyResults['Gumbel'][tau]['frank'],
                        helmAccuracyResults['Frank'][tau]['frank']])
        ind = np.arange(4)
        width = 0.2
        p1 = plt.bar(ind,cla,width,color='b')
        p2 = plt.bar(ind,gau,width,color='g',bottom=cla)
        p3 = plt.bar(ind,gum,width,color='k',bottom=cla+gau)
        p4 = plt.bar(ind,fra,width,color='r',bottom=cla+gau+gum)
        plt.xticks(ind+width/2.,('Clayton', 'Gaussian', 'Gumbel', 'Frank'))
        plt.legend( (p1[0], p2[0], p3[0], p4[0]), ('Clayton', 'Gaussian', 'Gumbel', 'Frank') )

        plt.grid()
        plt.savefig(os.path.join('figures/HELM_performance/', 
                     'HELM_DIM_' + str(N) + '_tau_' + "{0:.2f}".format(tau) + ' _K_' + str(K) + '.png'))
        
        plt.close()
コード例 #2
0
def visualizeMNSig():
    # some tests on the copula multinomial signature

    K = 4
    M = 1000
    N = 3
    tauVec = np.arange(-0.9, 0.95, 0.05)
    # the families to test against and pick optimal copula
    families = ['Gaussian', 'Clayton', 'Gumbel', 'Frank']

    helmAccuracyResults = testHELM_parametric(K, M, N, tauVec, families)

    resultsAggregate = {}

    for family in families:
        famResults = {}
        for tau in tauVec:
            mnsig = copulamnsig(family, K, 'kendall', tau)
            famResults[tau] = mnsig
        resultsAggregate[family] = famResults

    # visualize the results
    for tau in tauVec:
        # we would also like to visualize this copula on the side, to try to
        # understand what may be a better way todo model selection
        try:
            r = invcopulastat('Gaussian', 'kendall', tau)
        except ValueError:
            r = -1
        Rho = np.empty((N, N))
        for jj in range(0, N):
            for kk in range(0, N):
                if (jj == kk):
                    Rho[jj][kk] = 1
                else:
                    Rho[jj][kk] = r

        try:
            alpha_clayton = invcopulastat('Clayton', 'kendall', tau)
        except ValueError:
            alpha_clayton = -1

        try:
            alpha_gumbel = invcopulastat('Gumbel', 'kendall', tau)
        except ValueError:
            alpha_gumbel = -1

        try:
            alpha_frank = invcopulastat('Frank', 'kendall', tau)
        except ValueError:
            alpha_frank = -1

        if (r != -1):
            try:
                U_gauss = copularnd('Gaussian', M, Rho)
            except ValueError:
                U_gauss = np.zeros((M, N))
        if (alpha_clayton != -1):
            try:
                U_clayton = copularnd('Clayton', M, N, alpha_clayton)
            except ValueError:
                U_clayton = np.zeros((M, N))
        if (alpha_frank != -1):
            try:
                U_frank = copularnd('Frank', M, N, alpha_frank)
            except ValueError:
                U_frank = np.zeros((M, N))
        if (alpha_gumbel != -1):
            try:
                U_gumbel = copularnd('Gumbel', M, N, alpha_gumbel)
            except ValueError:
                U_gumbel = np.zeros((M, N))

        # get each family's MN signature and plot it
        plt.figure(figsize=(30, 20))

        plt.subplot(231)
        if (np.sum(resultsAggregate['Gaussian'][tau]) > 0):
            plt.plot(np.arange(1, K * K + 1),
                     resultsAggregate['Gaussian'][tau],
                     'b.-',
                     label='Gaussian Copula')
        if (np.sum(resultsAggregate['Clayton'][tau]) > 0):
            plt.plot(np.arange(1, K * K + 1),
                     resultsAggregate['Clayton'][tau],
                     'g.-',
                     label='Clayton Copula')
        if (np.sum(resultsAggregate['Gumbel'][tau]) > 0):
            plt.plot(np.arange(1, K * K + 1),
                     resultsAggregate['Gumbel'][tau],
                     'r.-',
                     label='Gumbel Copula')
        if (np.sum(resultsAggregate['Frank'][tau]) > 0):
            plt.plot(np.arange(1, K * K + 1),
                     resultsAggregate['Frank'][tau],
                     'k.-',
                     label='Frank Copula')

        plt.title(r'Copula Multinomial Signature $\tau$=' +
                  "{0:.2f}".format(tau) + ' K=' + str(K))
        plt.legend()
        plt.grid()

        plt.subplot(232)
        if (r != -1):
            plt.scatter(U_gauss[:, 0], U_gauss[:, 1])
        plt.grid()
        plt.title(r'Gaussian Copula, $\rho$=' + "{0:.2f}".format(r) +
                  r' $\tau$=' + "{0:.2f}".format(tau))

        plt.subplot(233)
        if (alpha_clayton != -1):
            plt.scatter(U_clayton[:, 0], U_clayton[:, 1])
        plt.grid()
        plt.title(r'Clayton Copula, $\alpha$=' +
                  "{0:.2f}".format(alpha_clayton) + r' $\tau$=' +
                  "{0:.2f}".format(tau))

        plt.subplot(235)
        if (alpha_frank != -1):
            plt.scatter(U_frank[:, 0], U_frank[:, 1])
        plt.grid()
        plt.title(r'Frank Copula, $\alpha$=' + "{0:.2f}".format(alpha_frank) +
                  r' $\tau$=' + "{0:.2f}".format(tau))

        plt.subplot(236)
        if (alpha_gumbel != -1):
            plt.scatter(U_gumbel[:, 0], U_gumbel[:, 1])
        plt.grid()
        plt.title(r'Gumbel Copula, $\alpha$=' +
                  "{0:.2f}".format(alpha_gumbel) + r' $\tau$=' +
                  "{0:.2f}".format(tau))

        plt.subplot(234)
        # index manually to ensure accuracy
        cla = np.array([
            helmAccuracyResults['Clayton'][tau]['clayton'],
            helmAccuracyResults['Gaussian'][tau]['clayton'],
            helmAccuracyResults['Gumbel'][tau]['clayton'],
            helmAccuracyResults['Frank'][tau]['clayton']
        ])
        gau = np.array([
            helmAccuracyResults['Clayton'][tau]['gaussian'],
            helmAccuracyResults['Gaussian'][tau]['gaussian'],
            helmAccuracyResults['Gumbel'][tau]['gaussian'],
            helmAccuracyResults['Frank'][tau]['gaussian']
        ])
        gum = np.array([
            helmAccuracyResults['Clayton'][tau]['gumbel'],
            helmAccuracyResults['Gaussian'][tau]['gumbel'],
            helmAccuracyResults['Gumbel'][tau]['gumbel'],
            helmAccuracyResults['Frank'][tau]['gumbel']
        ])
        fra = np.array([
            helmAccuracyResults['Clayton'][tau]['frank'],
            helmAccuracyResults['Gaussian'][tau]['frank'],
            helmAccuracyResults['Gumbel'][tau]['frank'],
            helmAccuracyResults['Frank'][tau]['frank']
        ])
        ind = np.arange(4)
        width = 0.2
        p1 = plt.bar(ind, cla, width, color='b')
        p2 = plt.bar(ind, gau, width, color='g', bottom=cla)
        p3 = plt.bar(ind, gum, width, color='k', bottom=cla + gau)
        p4 = plt.bar(ind, fra, width, color='r', bottom=cla + gau + gum)
        plt.xticks(ind + width / 2.,
                   ('Clayton', 'Gaussian', 'Gumbel', 'Frank'))
        plt.legend((p1[0], p2[0], p3[0], p4[0]),
                   ('Clayton', 'Gaussian', 'Gumbel', 'Frank'))

        plt.grid()
        plt.savefig(
            os.path.join(
                'figures/HELM_performance/', 'HELM_DIM_' + str(N) + '_tau_' +
                "{0:.2f}".format(tau) + ' _K_' + str(K) + '.png'))

        plt.close()
コード例 #3
0
def testHELM(tau, M, N, familyToTest, numMCSims, copulaFamiliesToTest):
    results = {}
    for fam in copulaFamiliesToTest:
        results[fam.lower()] = 0
    
    for ii in range(0,numMCSims):
        # generate samples of the requested copula with tau same as the
        # empirical signature we calculated above
        if(familyToTest.lower()=='gaussian'):
            r = invcopulastat(familyToTest, 'kendall', tau)
            
            Rho = np.empty((N,N))
            for jj in range(0,N):
                for kk in range(0,N):
                    if(jj==kk):
                        Rho[jj][kk] = 1
                    else:
                        Rho[jj][kk] = r
            try:
                U = copularnd(familyToTest, M, Rho)
            except ValueError:
                # copularnd will throw a ValueError if Rho is not a positive semidefinite matrix
                return results      # return 0, which will then be ignored by tests
                
        else:       # assume Clayton, Frank, or Gumbel
            try:
                alpha = invcopulastat(familyToTest, 'kendall', tau)
                U = copularnd(familyToTest, M, N, alpha)
            except ValueError:
                continue
            
        lst = []
        for jj in range(0,N):
            U_conditioned = U[:,jj]
            # if there are any 1's, condition it
            U_conditioned[U_conditioned==1] = 0.99
            if(jj%2==0):
                lst.append(norm.ppf(U_conditioned))
            else:
                lst.append(expon.ppf(U_conditioned))
        
        # combine X and Y into the joint distribution w/ the copula
        X = np.vstack(lst)
        X = X.T
                    
        ret = optimalCopulaFamily(X, family_search=copulaFamiliesToTest)
        ret_family = ret[0].lower()
        # aggregate results
        results[ret_family] = results[ret_family] + 1.0
        
        # display some progress
        sys.stdout.write("\rComputing " + str(familyToTest) + " Copula (DIM=%d) (tau=%f)-- %d%%" % (N,tau,ii+1))
        sys.stdout.flush()
    
    sys.stdout.write("\r")
    
    # convert results to percentage
    for fam in copulaFamiliesToTest:
        results[fam.lower()] = results[fam.lower()]/float(numMCSims) * 100
    
    return results
コード例 #4
0
def testHELM(tau, M, N, familyToTest, numMCSims, copulaFamiliesToTest):
    results = {}
    for fam in copulaFamiliesToTest:
        results[fam.lower()] = 0

    for ii in range(0, numMCSims):
        # generate samples of the requested copula with tau same as the
        # empirical signature we calculated above
        if (familyToTest.lower() == 'gaussian'):
            r = invcopulastat(familyToTest, 'kendall', tau)

            Rho = np.empty((N, N))
            for jj in range(0, N):
                for kk in range(0, N):
                    if (jj == kk):
                        Rho[jj][kk] = 1
                    else:
                        Rho[jj][kk] = r
            try:
                U = copularnd(familyToTest, M, Rho)
            except ValueError:
                # copularnd will throw a ValueError if Rho is not a positive semidefinite matrix
                return results  # return 0, which will then be ignored by tests

        else:  # assume Clayton, Frank, or Gumbel
            try:
                alpha = invcopulastat(familyToTest, 'kendall', tau)
                U = copularnd(familyToTest, M, N, alpha)
            except ValueError:
                continue

        lst = []
        for jj in range(0, N):
            U_conditioned = U[:, jj]
            # if there are any 1's, condition it
            U_conditioned[U_conditioned == 1] = 0.99
            if (jj % 2 == 0):
                lst.append(norm.ppf(U_conditioned))
            else:
                lst.append(expon.ppf(U_conditioned))

        # combine X and Y into the joint distribution w/ the copula
        X = np.vstack(lst)
        X = X.T

        ret = optimalCopulaFamily(X, family_search=copulaFamiliesToTest)
        ret_family = ret[0].lower()
        # aggregate results
        results[ret_family] = results[ret_family] + 1.0

        # display some progress
        sys.stdout.write("\rComputing " + str(familyToTest) +
                         " Copula (DIM=%d) (tau=%f)-- %d%%" % (N, tau, ii + 1))
        sys.stdout.flush()

    sys.stdout.write("\r")

    # convert results to percentage
    for fam in copulaFamiliesToTest:
        results[fam.lower()] = results[fam.lower()] / float(numMCSims) * 100

    return results