def test_edit_series(self, jhu_data, population_data, country): # Setting snl = Scenario(jhu_data, population_data, country) snl.first_date = "01Apr2020" snl.last_date = "01Aug2020" # Add and clear assert snl.summary().empty snl.add(end_date="05May2020") snl.add(days=20) snl.add() snl.add(end_date="01Sep2020") assert len(snl["Main"]) == 4 snl.clear(include_past=True) snl.add(end_date="01Sep2020", name="New") assert len(snl["New"]) == 2 # Delete snl.delete(name="Main") assert len(snl["Main"]) == 0 with pytest.raises(TypeError): snl.delete(phases="1st", name="New") snl.delete(phases=["1st"], name="New") assert len(snl["New"]) == 1 snl.delete(name="New") with pytest.raises(KeyError): assert len(snl["New"]) == 1
def test_estimate(self, jhu_data, population_data, country): warnings.simplefilter("ignore", category=UserWarning) # Setting snl = Scenario(jhu_data, population_data, country) snl.first_date = "01Apr2020" snl.last_date = "01Aug2020" with pytest.raises(ValueError): snl.estimate(SIR) snl.trend(include_init_phase=True, show_figure=False) snl.disable(phases=["0th"]) with pytest.raises(AttributeError): snl.estimate_history(phase="1th") # Parameter estimation with pytest.raises(KeyError): snl.estimate(SIR, phases=["30th"]) with pytest.raises(ValueError): snl.estimate(model=SIR, tau=1440) snl.enable(phases=["0th"]) with pytest.raises(TypeError): snl.estimate(model=SIR, phases="1st") with pytest.raises(ValueError): snl.estimate(model=SIR, phases=["0th"]) snl.clear(include_past=True) snl.trend(show_figure=False) snl.estimate(SIR) # Estimation history snl.estimate_history(phase="1st") # Estimation accuracy snl.estimate_accuracy(phase="1st") # Get a value snl.get(Term.RT) with pytest.raises(KeyError): snl.get("feeling")
def test_summary(self, jhu_data, population_data, country): # Setting snl = Scenario(jhu_data, population_data, country) snl.first_date = "01Apr2020" snl.last_date = "01Aug2020" snl.trend(show_figure=False) # One scenario assert set(snl.summary().columns) == set( [Term.TENSE, Term.START, Term.END, Term.N]) # Show two scenarios snl.clear(name="New") cols = snl.summary().reset_index().columns assert set([Term.SERIES, Term.PHASE]).issubset(set(cols)) # Show selected scenario cols_sel = snl.summary(name="New").reset_index().columns assert not set([Term.SERIES, Term.PHASE]).issubset(set(cols_sel)) # Columns to show show_cols = [Term.N, Term.START] assert set(snl.summary(columns=show_cols).columns) == set(show_cols) with pytest.raises(TypeError): snl.summary(columns=Term.N) with pytest.raises(KeyError): snl.summary(columns=[Term.N, "Temperature"]) # To markdown snl.summary().to_markdown()
def test_scenario_with_model_change(self): # Instance to save population values population_data = PopulationData(filename=None) # Set tau value and start date of records example_data = ExampleData(tau=1440, start_date="01Jan2020") # Preset of SIR-F parameters preset_dict = SIRF.EXAMPLE["param_dict"] # Create dataset from 01Jan2020 to 31Jan2020 area = {"country": "Theoretical"} example_data.add(SIRF, step_n=30, **area) # Register population value population_data.update(SIRF.EXAMPLE["population"], **area) # Create Scenario class snl = Scenario(example_data, population_data, tau=1440, **area) # Set 0th phase from 02Jan2020 to 31Jan2020 with preset parameter values snl.clear(include_past=True) snl.add(end_date="31Jan2020", model=SIRF, **preset_dict) # Add main scenario snl.add(end_date="31Dec2020", name="Main") # Add lockdown scenario rho_lock = snl.get("rho", phase="0th") / 2 snl.add(end_date="31Dec2020", name="Lockdown", rho=rho_lock) # Add medicine scenario kappa_med = snl.get("kappa", phase="0th") / 2 sigma_med = snl.get("sigma", phase="0th") * 2 snl.add(end_date="31Dec2020", name="Medicine", kappa=kappa_med, sigma=sigma_med) # Add vaccine scenario snl.add(end_date="31Dec2020", name="Vaccine", model=SIRFV, omega=0.001) # Summarize snl.summary() # Compare scenarios snl.describe(y0_dict={"Vaccinated": 0})
def test_add_past_phases(self, jhu_data, population_data): scenario = Scenario(jhu_data, population_data, country="India") scenario.delete() # Phase series scenario.clear(name="Medicine") scenario.add(days=100) scenario.delete(name="Medicine") with pytest.raises(TypeError): scenario.delete(phase="0th") with pytest.raises(TypeError): scenario.summary(columns="Population") with pytest.raises(KeyError): scenario.summary(columns=["Value"]) # Range of past phases scenario.first_date = "01Mar2020" scenario.first_date scenario.last_date = "16Jul2020" scenario.last_date with pytest.raises(ValueError): scenario.first_date = "01Aug2020" with pytest.raises(ValueError): scenario.last_date = "01Feb2020" # With trend analysis scenario.trend(set_phases=True) with pytest.raises(ValueError): scenario.trend(set_phases=False, n_points=3) scenario.combine(phases=["3rd", "4th"]) scenario.separate(date="30May2020", phase="1st") scenario.delete(phases=["1st"]) scenario.trend(set_phases=False) trend_df = scenario.summary() assert len(trend_df) == 4 # add scenarios one by one scenario.clear(include_past=True) scenario.add(end_date="29May2020") scenario.add(end_date="05Jun2020").delete(phases=["0th"]) scenario.add(end_date="15Jun2020") scenario.add(end_date="04Jul2020") scenario.add() one_df = scenario.summary() assert len(one_df) == 4 # With 0th phase scenario.use_0th = True scenario.trend(set_phases=False, include_init_phase=True) scenario.use_0th = False scenario.trend(set_phases=True, include_init_phase=True) scenario.delete(phases=["0th"]) assert len(scenario.summary()) == 5 with pytest.raises(TypeError): scenario.delete(phases="1st")
def test_adjust_end(self, jhu_data, population_data, country): # Setting scenario = Scenario(country=country) scenario.register(jhu_data, population_data) scenario.timepoints(first_date="01Dec2020", today="01Feb2021") # Main scenario scenario.add(end_date="01Apr2021", name="Main") # New scenario scenario.clear(name="New", include_past=True) scenario.add(end_date="01Jan2021", name="New") # Adjust end date scenario.adjust_end() # Check output assert scenario.get(Term.END, phase="last", name="Main") == "01Apr2021" assert scenario.get(Term.END, phase="last", name="New") == "01Apr2021"
def test_scenario(self): area = {"country": "Theoretical"} # Set-up example dataset (from 01Jan2020 to 31Jan2020) example_data = ExampleData(tau=1440, start_date="01Jan2020") example_data.add(SIRF, step_n=30, **area) # Population value population_data = PopulationData(filename=None) population_data.update(SIRF.EXAMPLE["population"], **area) # Set-up Scenario instance snl = Scenario(tau=1440, **area) snl.register(example_data, population_data) # Check records record_df = snl.records(variables="CFR") assert set(record_df.columns) == set( [Term.DATE, Term.C, Term.F, Term.R]) # Add a past phase to 31Jan2020 with parameter values snl.add(model=SIRF, **SIRF.EXAMPLE["param_dict"]) # Check summary df = snl.summary() assert not df.empty assert len(df) == 1 assert Term.RT in df # Main scenario snl.add(end_date="31Dec2020", name="Main") assert snl.get(Term.RT, phase="last", name="Main") == 2.50 # Lockdown scenario snl.clear(name="Lockdown") rho_lock = snl.get("rho", phase="0th") * 0.5 snl.add(end_date="31Dec2020", name="Lockdown", rho=rho_lock) assert snl.get(Term.RT, phase="last", name="Lockdown") == 1.25 # Medicine scenario snl.clear(name="Medicine") kappa_med = snl.get("kappa", phase="0th") * 0.5 sigma_med = snl.get("sigma", phase="0th") * 2 snl.add(end_date="31Dec2020", name="Medicine", kappa=kappa_med, sigma=sigma_med) assert snl.get(Term.RT, phase="last", name="Medicine") == 1.31 # Add vaccine scenario snl.clear(name="Vaccine") rho_vac = snl.get("rho", phase="0th") * 0.8 kappa_vac = snl.get("kappa", phase="0th") * 0.6 sigma_vac = snl.get("sigma", phase="0th") * 1.2 snl.add(end_date="31Dec2020", name="Vaccine", rho=rho_vac, kappa=kappa_vac, sigma=sigma_vac) assert snl.get(Term.RT, phase="last", name="Vaccine") == 1.72 # Description snl.describe() # History snl.history("Rt") snl.history("rho") snl.history("Infected") snl.history_rate(name="Medicine") snl.simulate(name="Vaccine")