def test_estimate(self, jhu_data, population_data, country): warnings.simplefilter("ignore", category=UserWarning) # Setting snl = Scenario(jhu_data, population_data, country) snl.first_date = "01Apr2020" snl.last_date = "01Aug2020" with pytest.raises(ValueError): snl.estimate(SIR) snl.trend(include_init_phase=True, show_figure=False) snl.disable(phases=["0th"]) with pytest.raises(AttributeError): snl.estimate_history(phase="1th") # Parameter estimation with pytest.raises(KeyError): snl.estimate(SIR, phases=["30th"]) with pytest.raises(ValueError): snl.estimate(model=SIR, tau=1440) snl.enable(phases=["0th"]) with pytest.raises(TypeError): snl.estimate(model=SIR, phases="1st") with pytest.raises(ValueError): snl.estimate(model=SIR, phases=["0th"]) snl.clear(include_past=True) snl.trend(show_figure=False) snl.estimate(SIR) # Estimation history snl.estimate_history(phase="1st") # Estimation accuracy snl.estimate_accuracy(phase="1st") # Get a value snl.get(Term.RT) with pytest.raises(KeyError): snl.get("feeling")
def test_estimate(self, jhu_data, population_data, country): warnings.simplefilter("ignore", category=UserWarning) # Setting snl = Scenario(jhu_data, population_data, country) snl.first_date = "01Apr2020" snl.last_date = "01Aug2020" with pytest.raises(ValueError): snl.estimate(SIR) snl.trend(show_figure=False) with pytest.raises(AttributeError): snl.estimate_history(phase="last") # Parameter estimation with pytest.raises(KeyError): snl.estimate(SIR, phases=["30th"]) with pytest.raises(ValueError): snl.estimate(model=SIR, tau=1440) snl.estimate(SIR, timeout=1, timeout_iteration=1) # Estimation history snl.estimate_history(phase="last") # Estimation accuracy snl.estimate_accuracy(phase="last") # Get a value snl.get(Term.RT) with pytest.raises(KeyError): snl.get("feeling")
def test_analysis(self, jhu_data, population_data): scenario = Scenario(jhu_data, population_data, country="Italy") with pytest.raises(KeyError): scenario.simulate(name="Main", show_figure=False) with pytest.raises(ValueError): scenario.estimate(model=SIRF) # S-R trend analysis scenario.trend(show_figure=False) warnings.filterwarnings("ignore", category=UserWarning) scenario.trend(show_figure=True) # Parameter estimation of SIR-F model with pytest.raises(ValueError): scenario.param_history(targets=["Rt"], show_figure=False) with pytest.raises(ValueError): scenario.estimate(model=SIRF, tau=1440) scenario.estimate(model=SIRF) # History of estimation scenario.estimate_history(phase="1st") with pytest.raises(KeyError): scenario.estimate_history(phase="0th") # Accuracy of estimation scenario.estimate_accuracy(phase="1st") with pytest.raises(KeyError): scenario.estimate_accuracy(phase="0th") # Prediction scenario.add(name="Main", days=100) scenario.simulate(name="Main", show_figure=False) scenario.simulate(name="Main", show_figure=True) scenario.param_history(targets=["Rt"], show_figure=False) scenario.param_history(targets=["Rt"], divide_by_first=False) scenario.param_history(targets=["Rt"], show_box_plot=False) with pytest.raises(KeyError): scenario.param_history(targets=["Rt", "Value"]) with pytest.raises(KeyError): scenario.param_history(targets=["Rt"], box_plot=False) # New scenario sigma_new = scenario.get("sigma", phase="last") * 2 with pytest.raises(KeyError): scenario.get("value") warnings.filterwarnings("ignore", category=DeprecationWarning) scenario.add_phase(name="New medicines", days=100, sigma=sigma_new) # Summarize scenarios summary_df = scenario.summary() assert isinstance(summary_df, pd.DataFrame) desc_df = scenario.describe() assert isinstance(desc_df, pd.DataFrame) # Estimation errors with pytest.raises(TypeError): scenario.estimate(SIRF, phases="1st") with pytest.raises(KeyError): scenario.estimate(SIRF, phases=["100th"])