df_test_collated = pd.read_csv(path + 'df_test_collated.csv') # specify output folder to save plots in output_folder = '../old_output/shallow_tctc/%s/train_collated_test_collated/' % KEY lm = LearningModel(df_train_collated, target_variable='demand', split_ratio=0.2, output_folder=output_folder, scale=True, scale_output=False, output_zscore=False, output_minmax=False, output_box=False, output_log=False, input_zscore=None, input_minmax=scaling[KEY], input_box=None, input_log=None, cols_drop=None, grid=True, random_grid=False, nb_folds_grid=10, nb_repeats_grid=10, testing_data=df_test_collated, save_errors_xlsx=True, save_validation=False) for model in models_to_test: model_name = models_to_test[model] print('\n********** Results for %s **********' % model_name)
% (service, mohafaza)) mylist = list(df.columns.values) mylist.remove('demand') lm = LearningModel(df, target_variable='demand', split_ratio=0.2, output_folder=output_folder + '%s_%s/' % (service, mohafaza), scale=True, scale_output=False, output_zscore=False, output_minmax=False, output_box=False, output_log=False, input_zscore=None, input_minmax=(0, 11) if 'w_{t-5}' in list( df.columns.values) else (0, 10), input_box=None, input_log=None, cols_drop=None, grid=True, random_grid=False, nb_folds_grid=10, nb_repeats_grid=10, save_errors_xlsx=True, save_validation=False) for model in models_to_test: model_name = models_to_test[model] print('\n********** Results for %s **********' %