df_test_collated = pd.read_csv(path + 'df_test_collated.csv')

# specify output folder to save plots in
output_folder = '../old_output/shallow_tctc/%s/train_collated_test_collated/' % KEY

lm = LearningModel(df_train_collated,
                   target_variable='demand',
                   split_ratio=0.2,
                   output_folder=output_folder,
                   scale=True,
                   scale_output=False,
                   output_zscore=False,
                   output_minmax=False,
                   output_box=False,
                   output_log=False,
                   input_zscore=None,
                   input_minmax=scaling[KEY],
                   input_box=None,
                   input_log=None,
                   cols_drop=None,
                   grid=True,
                   random_grid=False,
                   nb_folds_grid=10,
                   nb_repeats_grid=10,
                   testing_data=df_test_collated,
                   save_errors_xlsx=True,
                   save_validation=False)

for model in models_to_test:
    model_name = models_to_test[model]
    print('\n********** Results for %s **********' % model_name)
Exemplo n.º 2
0
                    % (service, mohafaza))

                mylist = list(df.columns.values)
                mylist.remove('demand')
                lm = LearningModel(df,
                                   target_variable='demand',
                                   split_ratio=0.2,
                                   output_folder=output_folder + '%s_%s/' %
                                   (service, mohafaza),
                                   scale=True,
                                   scale_output=False,
                                   output_zscore=False,
                                   output_minmax=False,
                                   output_box=False,
                                   output_log=False,
                                   input_zscore=None,
                                   input_minmax=(0, 11) if 'w_{t-5}' in list(
                                       df.columns.values) else (0, 10),
                                   input_box=None,
                                   input_log=None,
                                   cols_drop=None,
                                   grid=True,
                                   random_grid=False,
                                   nb_folds_grid=10,
                                   nb_repeats_grid=10,
                                   save_errors_xlsx=True,
                                   save_validation=False)

                for model in models_to_test:
                    model_name = models_to_test[model]
                    print('\n********** Results for %s **********' %