コード例 #1
0
def TFIDF_feateure(df, min_PCA = 5000):
    if IS_GPU:
        df_cu = cudf.DataFrame(df)
    else:
        df_cu = df
    max_features = 15000
    n_components = min(min_PCA, len(df_cu))
    nlp_model = TfidfVectorizer(stop_words = 'english', binary = True, max_features = max_features)
    text_embeddings = nlp_model.fit_transform(df_cu['title']).toarray()
    pca = PCA(n_components = n_components)
    if IS_GPU:
        text_embeddings = pca.fit_transform(text_embeddings).get()
    else:
        text_embeddings = pca.fit_transform(text_embeddings)
    print(f'Our title text embedding shape is {text_embeddings.shape}')
    return text_embeddings
コード例 #2
0
ファイル: utils.py プロジェクト: LouisFaure/Harmony-GPU
def run_pca(data, device, n_components=300, var_explained=0.85):
    """Run PCA

    :param data: Dataframe of cells X genes. Typicaly multiscale space diffusion components
    :param n_components: Number of principal components
    :param var_explained: Include components that explain amount variance. Note
    number of components = min(n_components, components explaining var_explained)
    :return: PCA projections of the data and the explained variance
    """
    init_components = min([n_components, data.shape[0]])
    if device == "gpu":
        from cuml import PCA
        pca = PCA(n_components=init_components)
    elif device == "cpu":
        from sklearn.decomposition import PCA
        pca = PCA(n_components=init_components, svd_solver='randomized')
    pca.fit(data)
    if pca.explained_variance_ratio_.sum() >= 0.85:
        n_components = np.where(np.cumsum(pca.explained_variance_ratio_) >= var_explained)[0][0]

    print(f'Running PCA with {n_components} components')
    pca_projections = pca.fit_transform(data)
    pca_projections = pd.DataFrame(pca_projections, index=data.index)
    return pca_projections, pca.explained_variance_ratio_
コード例 #3
0
ファイル: 02-tsne.py プロジェクト: emnh/opengameart
data2 = data
#data2 = np.copy(data)
#for i1, i2 in zip(range(len(data)), indices):
#    data2[i1] = data[i2]

pcaFile = 'pca.np'
perComp = 100000
comps = len(data) // perComp + 1
pcaComps = 20
if 0:
    if not os.path.exists(pcaFile):
        data3 = np.zeros((len(data), pcaComps), np.float32)
        pca = PCA(n_components=pcaComps)
        for i in range(comps):
            data2 = data[i * perComp:(i + 1) * perComp]
            data2 = pca.fit_transform(data2)
            data3[i * perComp:(i + 1) * perComp, :] = data2
        data2 = data3
        del pca
        fd = open(pcaFile, 'wb')
        fd.write(data2.flatten().tobytes())
        fd.close()
    else:
        l = len(data)
        del data
        del data2
        data2 = np.fromfile(pcaFile, np.float32).reshape((l, pcaComps))

if 0:
    if not os.path.exists(pcaFile):
        pca = PCA(n_components=pcaComps)
コード例 #4
0
ファイル: plt_emb.py プロジェクト: chris4540/DD2430-ds-proj
# Extract embedding vectors
load_kwargs = {'batch_size': 128, 'num_workers': os.cpu_count()}

# test_embs, _ = extract_embeddings(emb_net, DataLoader(test_ds, **load_kwargs))
embs, labels = extract_embeddings(emb_net, DataLoader(train_ds, **load_kwargs))

# translate them to cpu + numpy
embs = embs.cpu().numpy()
labels = labels.cpu().numpy()
# -----------------------------------------------------------------------------
print("Plotting T-sne....")
from cuml.manifold import TSNE
tsne = TSNE(n_iter=1000, metric="euclidean")
projected_emb = tsne.fit_transform(embs)
fig = plot_embeddings(projected_emb, labels)
png_fname = join(exp_folder, 't-sne.png')
fig.savefig(png_fname, bbox_inches='tight')
pdf_fname = join(exp_folder, 't-sne.pdf')
fig.savefig(pdf_fname, bbox_inches='tight')
# -----------------------------------------------------------------------------
print("Plotting PCA....")
from cuml import PCA
pca_float = PCA(n_components=2)
cudf = pca_float.fit_transform(embs)
projected_emb = cudf.to_pandas().to_numpy()
fig = plot_embeddings(projected_emb, labels)
png_fname = join(exp_folder, 'pca.png')
fig.savefig(png_fname, bbox_inches='tight')
pdf_fname = join(exp_folder, 't-sne.pdf')
fig.savefig(pdf_fname, bbox_inches='tight')