def evaluate_network( config, Shuffles=[1], trainingsetindex=0, plotting=False, show_errors=True, comparisonbodyparts="all", gputouse=None, rescale=False, modelprefix="", ): """Evaluates the network. Evaluates the network based on the saved models at different stages of the training network. The evaluation results are stored in the .h5 and .csv file under the subdirectory 'evaluation_results'. Change the snapshotindex parameter in the config file to 'all' in order to evaluate all the saved models. Parameters ---------- config : string Full path of the config.yaml file. Shuffles: list, optional, default=[1] List of integers specifying the shuffle indices of the training dataset. trainingsetindex: int or str, optional, default=0 Integer specifying which "TrainingsetFraction" to use. Note that "TrainingFraction" is a list in config.yaml. This variable can also be set to "all". plotting: bool or str, optional, default=False Plots the predictions on the train and test images. If provided it must be either ``True``, ``False``, ``"bodypart"``, or ``"individual"``. Setting to ``True`` defaults as ``"bodypart"`` for multi-animal projects. show_errors: bool, optional, default=True Display train and test errors. comparisonbodyparts: str or list, optional, default="all" The average error will be computed for those body parts only. The provided list has to be a subset of the defined body parts. gputouse: int or None, optional, default=None Indicates the GPU to use (see number in ``nvidia-smi``). If you do not have a GPU put `None``. See: https://nvidia.custhelp.com/app/answers/detail/a_id/3751/~/useful-nvidia-smi-queries rescale: bool, optional, default=False Evaluate the model at the ``'global_scale'`` variable (as set in the ``pose_config.yaml`` file for a particular project). I.e. every image will be resized according to that scale and prediction will be compared to the resized ground truth. The error will be reported in pixels at rescaled to the *original* size. I.e. For a [200,200] pixel image evaluated at ``global_scale=.5``, the predictions are calculated on [100,100] pixel images, compared to 1/2*ground truth and this error is then multiplied by 2!. The evaluation images are also shown for the original size! modelprefix: str, optional, default="" Directory containing the deeplabcut models to use when evaluating the network. By default, the models are assumed to exist in the project folder. Returns ------- None Examples -------- If you do not want to plot and evaluate with shuffle set to 1. >>> deeplabcut.evaluate_network( '/analysis/project/reaching-task/config.yaml', Shuffles=[1], ) If you want to plot and evaluate with shuffle set to 0 and 1. >>> deeplabcut.evaluate_network( '/analysis/project/reaching-task/config.yaml', Shuffles=[0, 1], plotting=True, ) If you want to plot assemblies for a maDLC project >>> deeplabcut.evaluate_network( '/analysis/project/reaching-task/config.yaml', Shuffles=[1], plotting="individual", ) Note: This defaults to standard plotting for single-animal projects. """ if plotting not in (True, False, "bodypart", "individual"): raise ValueError(f"Unknown value for `plotting`={plotting}") import os start_path = os.getcwd() from deeplabcut.utils import auxiliaryfunctions cfg = auxiliaryfunctions.read_config(config) if cfg.get("multianimalproject", False): from .evaluate_multianimal import evaluate_multianimal_full # TODO: Make this code not so redundant! evaluate_multianimal_full( config=config, Shuffles=Shuffles, trainingsetindex=trainingsetindex, plotting=plotting, comparisonbodyparts=comparisonbodyparts, gputouse=gputouse, modelprefix=modelprefix, ) else: from deeplabcut.utils.auxfun_videos import imread, imresize from deeplabcut.pose_estimation_tensorflow.core import predict from deeplabcut.pose_estimation_tensorflow.config import load_config from deeplabcut.pose_estimation_tensorflow.datasets.utils import data_to_input from deeplabcut.utils import auxiliaryfunctions, conversioncode import tensorflow as tf # If a string was passed in, auto-convert to True for backward compatibility plotting = bool(plotting) if "TF_CUDNN_USE_AUTOTUNE" in os.environ: del os.environ[ "TF_CUDNN_USE_AUTOTUNE" ] # was potentially set during training tf.compat.v1.reset_default_graph() os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" # # tf.logging.set_verbosity(tf.logging.WARN) start_path = os.getcwd() # Read file path for pose_config file. >> pass it on cfg = auxiliaryfunctions.read_config(config) if gputouse is not None: # gpu selectinon os.environ["CUDA_VISIBLE_DEVICES"] = str(gputouse) if trainingsetindex == "all": TrainingFractions = cfg["TrainingFraction"] else: if ( trainingsetindex < len(cfg["TrainingFraction"]) and trainingsetindex >= 0 ): TrainingFractions = [cfg["TrainingFraction"][int(trainingsetindex)]] else: raise Exception( "Please check the trainingsetindex! ", trainingsetindex, " should be an integer from 0 .. ", int(len(cfg["TrainingFraction"]) - 1), ) # Loading human annotatated data trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder(cfg) Data = pd.read_hdf( os.path.join( cfg["project_path"], str(trainingsetfolder), "CollectedData_" + cfg["scorer"] + ".h5", ) ) # Get list of body parts to evaluate network for comparisonbodyparts = auxiliaryfunctions.IntersectionofBodyPartsandOnesGivenbyUser( cfg, comparisonbodyparts ) # Make folder for evaluation auxiliaryfunctions.attempttomakefolder( str(cfg["project_path"] + "/evaluation-results/") ) for shuffle in Shuffles: for trainFraction in TrainingFractions: ################################################## # Load and setup CNN part detector ################################################## datafn, metadatafn = auxiliaryfunctions.GetDataandMetaDataFilenames( trainingsetfolder, trainFraction, shuffle, cfg ) modelfolder = os.path.join( cfg["project_path"], str( auxiliaryfunctions.get_model_folder( trainFraction, shuffle, cfg, modelprefix=modelprefix ) ), ) path_test_config = Path(modelfolder) / "test" / "pose_cfg.yaml" # Load meta data ( data, trainIndices, testIndices, trainFraction, ) = auxiliaryfunctions.LoadMetadata( os.path.join(cfg["project_path"], metadatafn) ) try: dlc_cfg = load_config(str(path_test_config)) except FileNotFoundError: raise FileNotFoundError( "It seems the model for shuffle %s and trainFraction %s does not exist." % (shuffle, trainFraction) ) # change batch size, if it was edited during analysis! dlc_cfg["batch_size"] = 1 # in case this was edited for analysis. # Create folder structure to store results. evaluationfolder = os.path.join( cfg["project_path"], str( auxiliaryfunctions.get_evaluation_folder( trainFraction, shuffle, cfg, modelprefix=modelprefix ) ), ) auxiliaryfunctions.attempttomakefolder(evaluationfolder, recursive=True) # path_train_config = modelfolder / 'train' / 'pose_cfg.yaml' # Check which snapshots are available and sort them by # iterations Snapshots = np.array( [ fn.split(".")[0] for fn in os.listdir(os.path.join(str(modelfolder), "train")) if "index" in fn ] ) try: # check if any where found? Snapshots[0] except IndexError: raise FileNotFoundError( "Snapshots not found! It seems the dataset for shuffle %s and trainFraction %s is not trained.\nPlease train it before evaluating.\nUse the function 'train_network' to do so." % (shuffle, trainFraction) ) increasing_indices = np.argsort( [int(m.split("-")[1]) for m in Snapshots] ) Snapshots = Snapshots[increasing_indices] if cfg["snapshotindex"] == -1: snapindices = [-1] elif cfg["snapshotindex"] == "all": snapindices = range(len(Snapshots)) elif cfg["snapshotindex"] < len(Snapshots): snapindices = [cfg["snapshotindex"]] else: raise ValueError( "Invalid choice, only -1 (last), any integer up to last, or all (as string)!" ) final_result = [] ########################### RESCALING (to global scale) if rescale: scale = dlc_cfg["global_scale"] Data = ( pd.read_hdf( os.path.join( cfg["project_path"], str(trainingsetfolder), "CollectedData_" + cfg["scorer"] + ".h5", ) ) * scale ) else: scale = 1 conversioncode.guarantee_multiindex_rows(Data) ################################################## # Compute predictions over images ################################################## for snapindex in snapindices: dlc_cfg["init_weights"] = os.path.join( str(modelfolder), "train", Snapshots[snapindex] ) # setting weights to corresponding snapshot. trainingsiterations = ( dlc_cfg["init_weights"].split(os.sep)[-1] ).split("-")[ -1 ] # read how many training siterations that corresponds to. # Name for deeplabcut net (based on its parameters) DLCscorer, DLCscorerlegacy = auxiliaryfunctions.GetScorerName( cfg, shuffle, trainFraction, trainingsiterations, modelprefix=modelprefix, ) print( "Running ", DLCscorer, " with # of training iterations:", trainingsiterations, ) ( notanalyzed, resultsfilename, DLCscorer, ) = auxiliaryfunctions.CheckifNotEvaluated( str(evaluationfolder), DLCscorer, DLCscorerlegacy, Snapshots[snapindex], ) if notanalyzed: # Specifying state of model (snapshot / training state) sess, inputs, outputs = predict.setup_pose_prediction(dlc_cfg) Numimages = len(Data.index) PredicteData = np.zeros( (Numimages, 3 * len(dlc_cfg["all_joints_names"])) ) print("Running evaluation ...") for imageindex, imagename in tqdm(enumerate(Data.index)): image = imread( os.path.join(cfg["project_path"], *imagename), mode="skimage", ) if scale != 1: image = imresize(image, scale) image_batch = data_to_input(image) # Compute prediction with the CNN outputs_np = sess.run( outputs, feed_dict={inputs: image_batch} ) scmap, locref = predict.extract_cnn_output( outputs_np, dlc_cfg ) # Extract maximum scoring location from the heatmap, assume 1 person pose = predict.argmax_pose_predict( scmap, locref, dlc_cfg["stride"] ) PredicteData[ imageindex, : ] = ( pose.flatten() ) # NOTE: thereby cfg_test['all_joints_names'] should be same order as bodyparts! sess.close() # closes the current tf session index = pd.MultiIndex.from_product( [ [DLCscorer], dlc_cfg["all_joints_names"], ["x", "y", "likelihood"], ], names=["scorer", "bodyparts", "coords"], ) # Saving results DataMachine = pd.DataFrame( PredicteData, columns=index, index=Data.index ) DataMachine.to_hdf(resultsfilename, "df_with_missing") print( "Analysis is done and the results are stored (see evaluation-results) for snapshot: ", Snapshots[snapindex], ) DataCombined = pd.concat( [Data.T, DataMachine.T], axis=0, sort=False ).T RMSE, RMSEpcutoff = pairwisedistances( DataCombined, cfg["scorer"], DLCscorer, cfg["pcutoff"], comparisonbodyparts, ) testerror = np.nanmean(RMSE.iloc[testIndices].values.flatten()) trainerror = np.nanmean( RMSE.iloc[trainIndices].values.flatten() ) testerrorpcutoff = np.nanmean( RMSEpcutoff.iloc[testIndices].values.flatten() ) trainerrorpcutoff = np.nanmean( RMSEpcutoff.iloc[trainIndices].values.flatten() ) results = [ trainingsiterations, int(100 * trainFraction), shuffle, np.round(trainerror, 2), np.round(testerror, 2), cfg["pcutoff"], np.round(trainerrorpcutoff, 2), np.round(testerrorpcutoff, 2), ] final_result.append(results) if show_errors: print( "Results for", trainingsiterations, " training iterations:", int(100 * trainFraction), shuffle, "train error:", np.round(trainerror, 2), "pixels. Test error:", np.round(testerror, 2), " pixels.", ) print( "With pcutoff of", cfg["pcutoff"], " train error:", np.round(trainerrorpcutoff, 2), "pixels. Test error:", np.round(testerrorpcutoff, 2), "pixels", ) if scale != 1: print( "The predictions have been calculated for rescaled images (and rescaled ground truth). Scale:", scale, ) print( "Thereby, the errors are given by the average distances between the labels by DLC and the scorer." ) if plotting: print("Plotting...") foldername = os.path.join( str(evaluationfolder), "LabeledImages_" + DLCscorer + "_" + Snapshots[snapindex], ) auxiliaryfunctions.attempttomakefolder(foldername) Plotting( cfg, comparisonbodyparts, DLCscorer, trainIndices, DataCombined * 1.0 / scale, foldername, ) # Rescaling coordinates to have figure in original size! tf.compat.v1.reset_default_graph() # print(final_result) else: DataMachine = pd.read_hdf(resultsfilename) conversioncode.guarantee_multiindex_rows(DataMachine) if plotting: DataCombined = pd.concat( [Data.T, DataMachine.T], axis=0, sort=False ).T print( "Plotting...(attention scale might be inconsistent in comparison to when data was analyzed; i.e. if you used rescale)" ) foldername = os.path.join( str(evaluationfolder), "LabeledImages_" + DLCscorer + "_" + Snapshots[snapindex], ) auxiliaryfunctions.attempttomakefolder(foldername) Plotting( cfg, comparisonbodyparts, DLCscorer, trainIndices, DataCombined * 1.0 / scale, foldername, ) if len(final_result) > 0: # Only append if results were calculated make_results_file(final_result, evaluationfolder, DLCscorer) print( "The network is evaluated and the results are stored in the subdirectory 'evaluation_results'." ) print( "Please check the results, then choose the best model (snapshot) for prediction. You can update the config.yaml file with the appropriate index for the 'snapshotindex'.\nUse the function 'analyze_video' to make predictions on new videos." ) print( "Otherwise, consider adding more labeled-data and retraining the network (see DeepLabCut workflow Fig 2, Nath 2019)" ) # returning to initial folder os.chdir(str(start_path))
def return_evaluate_network_data( config, shuffle=0, trainingsetindex=0, comparisonbodyparts="all", Snapindex=None, rescale=False, fulldata=False, show_errors=True, modelprefix="", returnjustfns=True, ): """ Returns the results for (previously evaluated) network. deeplabcut.evaluate_network(..) Returns list of (per model): [trainingsiterations,trainfraction,shuffle,trainerror,testerror,pcutoff,trainerrorpcutoff,testerrorpcutoff,Snapshots[snapindex],scale,net_type] If fulldata=True, also returns (the complete annotation and prediction array) Returns list of: (DataMachine, Data, data, trainIndices, testIndices, trainFraction, DLCscorer,comparisonbodyparts, cfg, Snapshots[snapindex]) ---------- config : string Full path of the config.yaml file as a string. shuffle: integer integers specifying shuffle index of the training dataset. The default is 0. trainingsetindex: int, optional Integer specifying which TrainingsetFraction to use. By default the first (note that TrainingFraction is a list in config.yaml). This variable can also be set to "all". comparisonbodyparts: list of bodyparts, Default is "all". The average error will be computed for those body parts only (Has to be a subset of the body parts). rescale: bool, default False Evaluate the model at the 'global_scale' variable (as set in the test/pose_config.yaml file for a particular project). I.e. every image will be resized according to that scale and prediction will be compared to the resized ground truth. The error will be reported in pixels at rescaled to the *original* size. I.e. For a [200,200] pixel image evaluated at global_scale=.5, the predictions are calculated on [100,100] pixel images, compared to 1/2*ground truth and this error is then multiplied by 2!. The evaluation images are also shown for the original size! Examples -------- If you do not want to plot >>> deeplabcut._evaluate_network_data('/analysis/project/reaching-task/config.yaml', shuffle=[1]) -------- If you want to plot >>> deeplabcut.evaluate_network('/analysis/project/reaching-task/config.yaml',shuffle=[1],True) """ import os from deeplabcut.pose_estimation_tensorflow.config import load_config from deeplabcut.utils import auxiliaryfunctions start_path = os.getcwd() # Read file path for pose_config file. >> pass it on cfg = auxiliaryfunctions.read_config(config) # Loading human annotatated data trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder(cfg) # Data=pd.read_hdf(os.path.join(cfg["project_path"],str(trainingsetfolder),'CollectedData_' + cfg["scorer"] + '.h5'),'df_with_missing') # Get list of body parts to evaluate network for comparisonbodyparts = auxiliaryfunctions.IntersectionofBodyPartsandOnesGivenbyUser( cfg, comparisonbodyparts ) ################################################## # Load data... ################################################## trainFraction = cfg["TrainingFraction"][trainingsetindex] datafn, metadatafn = auxiliaryfunctions.GetDataandMetaDataFilenames( trainingsetfolder, trainFraction, shuffle, cfg ) modelfolder = os.path.join( cfg["project_path"], str( auxiliaryfunctions.get_model_folder( trainFraction, shuffle, cfg, modelprefix=modelprefix ) ), ) path_test_config = Path(modelfolder) / "test" / "pose_cfg.yaml" # Load meta data data, trainIndices, testIndices, trainFraction = auxiliaryfunctions.LoadMetadata( os.path.join(cfg["project_path"], metadatafn) ) try: dlc_cfg = load_config(str(path_test_config)) except FileNotFoundError: raise FileNotFoundError( "It seems the model for shuffle %s and trainFraction %s does not exist." % (shuffle, trainFraction) ) ########################### RESCALING (to global scale) if rescale == True: scale = dlc_cfg["global_scale"] print("Rescaling Data to ", scale) Data = ( pd.read_hdf( os.path.join( cfg["project_path"], str(trainingsetfolder), "CollectedData_" + cfg["scorer"] + ".h5", ) ) * scale ) else: scale = 1 Data = pd.read_hdf( os.path.join( cfg["project_path"], str(trainingsetfolder), "CollectedData_" + cfg["scorer"] + ".h5", ) ) evaluationfolder = os.path.join( cfg["project_path"], str( auxiliaryfunctions.get_evaluation_folder( trainFraction, shuffle, cfg, modelprefix=modelprefix ) ), ) # Check which snapshots are available and sort them by # iterations Snapshots = np.array( [ fn.split(".")[0] for fn in os.listdir(os.path.join(str(modelfolder), "train")) if "index" in fn ] ) if len(Snapshots) == 0: print( "Snapshots not found! It seems the dataset for shuffle %s and trainFraction %s is not trained.\nPlease train it before evaluating.\nUse the function 'train_network' to do so." % (shuffle, trainFraction) ) snapindices = [] else: increasing_indices = np.argsort([int(m.split("-")[1]) for m in Snapshots]) Snapshots = Snapshots[increasing_indices] if Snapindex == None: Snapindex = cfg["snapshotindex"] if Snapindex == -1: snapindices = [-1] elif Snapindex == "all": snapindices = range(len(Snapshots)) elif Snapindex < len(Snapshots): snapindices = [Snapindex] else: print( "Invalid choice, only -1 (last), any integer up to last, or all (as string)!" ) DATA = [] results = [] resultsfns = [] for snapindex in snapindices: dlc_cfg["init_weights"] = os.path.join( str(modelfolder), "train", Snapshots[snapindex] ) # setting weights to corresponding snapshot. trainingsiterations = (dlc_cfg["init_weights"].split(os.sep)[-1]).split("-")[ -1 ] # read how many training siterations that corresponds to. # name for deeplabcut net (based on its parameters) DLCscorer, DLCscorerlegacy = auxiliaryfunctions.GetScorerName( cfg, shuffle, trainFraction, trainingsiterations, modelprefix=modelprefix ) if not returnjustfns: print( "Retrieving ", DLCscorer, " with # of trainingiterations:", trainingsiterations, ) ( notanalyzed, resultsfilename, DLCscorer, ) = auxiliaryfunctions.CheckifNotEvaluated( str(evaluationfolder), DLCscorer, DLCscorerlegacy, Snapshots[snapindex] ) # resultsfilename=os.path.join(str(evaluationfolder),DLCscorer + '-' + str(Snapshots[snapindex])+ '.h5') # + '-' + str(snapshot)+ ' #'-' + Snapshots[snapindex]+ '.h5') print(resultsfilename) resultsfns.append(resultsfilename) if not returnjustfns: if not notanalyzed and os.path.isfile(resultsfilename): # data exists.. DataMachine = pd.read_hdf(resultsfilename) DataCombined = pd.concat([Data.T, DataMachine.T], axis=0).T RMSE, RMSEpcutoff = pairwisedistances( DataCombined, cfg["scorer"], DLCscorer, cfg["pcutoff"], comparisonbodyparts, ) testerror = np.nanmean(RMSE.iloc[testIndices].values.flatten()) trainerror = np.nanmean(RMSE.iloc[trainIndices].values.flatten()) testerrorpcutoff = np.nanmean( RMSEpcutoff.iloc[testIndices].values.flatten() ) trainerrorpcutoff = np.nanmean( RMSEpcutoff.iloc[trainIndices].values.flatten() ) if show_errors == True: print( "Results for", trainingsiterations, " training iterations:", int(100 * trainFraction), shuffle, "train error:", np.round(trainerror, 2), "pixels. Test error:", np.round(testerror, 2), " pixels.", ) print( "With pcutoff of", cfg["pcutoff"], " train error:", np.round(trainerrorpcutoff, 2), "pixels. Test error:", np.round(testerrorpcutoff, 2), "pixels", ) print("Snapshot", Snapshots[snapindex]) r = [ trainingsiterations, int(100 * trainFraction), shuffle, np.round(trainerror, 2), np.round(testerror, 2), cfg["pcutoff"], np.round(trainerrorpcutoff, 2), np.round(testerrorpcutoff, 2), Snapshots[snapindex], scale, dlc_cfg["net_type"], ] results.append(r) else: print("Model not trained/evaluated!") if fulldata == True: DATA.append( [ DataMachine, Data, data, trainIndices, testIndices, trainFraction, DLCscorer, comparisonbodyparts, cfg, evaluationfolder, Snapshots[snapindex], ] ) os.chdir(start_path) if returnjustfns: return resultsfns else: if fulldata == True: return DATA, results else: return results
def extract_maps( config, shuffle=0, trainingsetindex=0, gputouse=None, rescale=False, Indices=None, modelprefix="", ): """ Extracts the scoremap, locref, partaffinityfields (if available). Returns a dictionary indexed by: trainingsetfraction, snapshotindex, and imageindex for those keys, each item contains: (image,scmap,locref,paf,bpt names,partaffinity graph, imagename, True/False if this image was in trainingset) ---------- config : string Full path of the config.yaml file as a string. shuffle: integer integers specifying shuffle index of the training dataset. The default is 0. trainingsetindex: int, optional Integer specifying which TrainingsetFraction to use. By default the first (note that TrainingFraction is a list in config.yaml). This variable can also be set to "all". rescale: bool, default False Evaluate the model at the 'global_scale' variable (as set in the test/pose_config.yaml file for a particular project). I.e. every image will be resized according to that scale and prediction will be compared to the resized ground truth. The error will be reported in pixels at rescaled to the *original* size. I.e. For a [200,200] pixel image evaluated at global_scale=.5, the predictions are calculated on [100,100] pixel images, compared to 1/2*ground truth and this error is then multiplied by 2!. The evaluation images are also shown for the original size! Examples -------- If you want to extract the data for image 0 and 103 (of the training set) for model trained with shuffle 0. >>> deeplabcut.extract_maps(configfile,0,Indices=[0,103]) """ from deeplabcut.utils.auxfun_videos import imread, imresize from deeplabcut.pose_estimation_tensorflow.core import ( predict, predict_multianimal as predictma, ) from deeplabcut.pose_estimation_tensorflow.config import load_config from deeplabcut.pose_estimation_tensorflow.datasets.utils import data_to_input from deeplabcut.utils import auxiliaryfunctions from tqdm import tqdm import tensorflow as tf import pandas as pd from pathlib import Path import numpy as np tf.compat.v1.reset_default_graph() os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" # # tf.logging.set_verbosity(tf.logging.WARN) start_path = os.getcwd() # Read file path for pose_config file. >> pass it on cfg = auxiliaryfunctions.read_config(config) if gputouse is not None: # gpu selectinon os.environ["CUDA_VISIBLE_DEVICES"] = str(gputouse) if trainingsetindex == "all": TrainingFractions = cfg["TrainingFraction"] else: if trainingsetindex < len( cfg["TrainingFraction"]) and trainingsetindex >= 0: TrainingFractions = [ cfg["TrainingFraction"][int(trainingsetindex)] ] else: raise Exception( "Please check the trainingsetindex! ", trainingsetindex, " should be an integer from 0 .. ", int(len(cfg["TrainingFraction"]) - 1), ) # Loading human annotatated data trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder(cfg) Data = pd.read_hdf( os.path.join( cfg["project_path"], str(trainingsetfolder), "CollectedData_" + cfg["scorer"] + ".h5", )) # Make folder for evaluation auxiliaryfunctions.attempttomakefolder( str(cfg["project_path"] + "/evaluation-results/")) Maps = {} for trainFraction in TrainingFractions: Maps[trainFraction] = {} ################################################## # Load and setup CNN part detector ################################################## datafn, metadatafn = auxiliaryfunctions.GetDataandMetaDataFilenames( trainingsetfolder, trainFraction, shuffle, cfg) modelfolder = os.path.join( cfg["project_path"], str( auxiliaryfunctions.get_model_folder(trainFraction, shuffle, cfg, modelprefix=modelprefix)), ) path_test_config = Path(modelfolder) / "test" / "pose_cfg.yaml" # Load meta data ( data, trainIndices, testIndices, trainFraction, ) = auxiliaryfunctions.LoadMetadata( os.path.join(cfg["project_path"], metadatafn)) try: dlc_cfg = load_config(str(path_test_config)) except FileNotFoundError: raise FileNotFoundError( "It seems the model for shuffle %s and trainFraction %s does not exist." % (shuffle, trainFraction)) # change batch size, if it was edited during analysis! dlc_cfg["batch_size"] = 1 # in case this was edited for analysis. # Create folder structure to store results. evaluationfolder = os.path.join( cfg["project_path"], str( auxiliaryfunctions.get_evaluation_folder( trainFraction, shuffle, cfg, modelprefix=modelprefix)), ) auxiliaryfunctions.attempttomakefolder(evaluationfolder, recursive=True) # path_train_config = modelfolder / 'train' / 'pose_cfg.yaml' # Check which snapshots are available and sort them by # iterations Snapshots = np.array([ fn.split(".")[0] for fn in os.listdir(os.path.join(str(modelfolder), "train")) if "index" in fn ]) try: # check if any where found? Snapshots[0] except IndexError: raise FileNotFoundError( "Snapshots not found! It seems the dataset for shuffle %s and trainFraction %s is not trained.\nPlease train it before evaluating.\nUse the function 'train_network' to do so." % (shuffle, trainFraction)) increasing_indices = np.argsort( [int(m.split("-")[1]) for m in Snapshots]) Snapshots = Snapshots[increasing_indices] if cfg["snapshotindex"] == -1: snapindices = [-1] elif cfg["snapshotindex"] == "all": snapindices = range(len(Snapshots)) elif cfg["snapshotindex"] < len(Snapshots): snapindices = [cfg["snapshotindex"]] else: print( "Invalid choice, only -1 (last), any integer up to last, or all (as string)!" ) ########################### RESCALING (to global scale) scale = dlc_cfg["global_scale"] if rescale else 1 Data *= scale bptnames = [ dlc_cfg["all_joints_names"][i] for i in range(len(dlc_cfg["all_joints"])) ] for snapindex in snapindices: dlc_cfg["init_weights"] = os.path.join( str(modelfolder), "train", Snapshots[snapindex] ) # setting weights to corresponding snapshot. trainingsiterations = ( dlc_cfg["init_weights"].split(os.sep)[-1] ).split("-")[ -1] # read how many training siterations that corresponds to. # Name for deeplabcut net (based on its parameters) # DLCscorer,DLCscorerlegacy = auxiliaryfunctions.GetScorerName(cfg,shuffle,trainFraction,trainingsiterations) # notanalyzed, resultsfilename, DLCscorer=auxiliaryfunctions.CheckifNotEvaluated(str(evaluationfolder),DLCscorer,DLCscorerlegacy,Snapshots[snapindex]) # print("Extracting maps for ", DLCscorer, " with # of trainingiterations:", trainingsiterations) # if notanalyzed: #this only applies to ask if h5 exists... # Specifying state of model (snapshot / training state) sess, inputs, outputs = predict.setup_pose_prediction(dlc_cfg) Numimages = len(Data.index) PredicteData = np.zeros( (Numimages, 3 * len(dlc_cfg["all_joints_names"]))) print("Analyzing data...") if Indices is None: Indices = enumerate(Data.index) else: Ind = [Data.index[j] for j in Indices] Indices = enumerate(Ind) DATA = {} for imageindex, imagename in tqdm(Indices): image = imread(os.path.join(cfg["project_path"], *imagename), mode="skimage") if scale != 1: image = imresize(image, scale) image_batch = data_to_input(image) # Compute prediction with the CNN outputs_np = sess.run(outputs, feed_dict={inputs: image_batch}) if cfg.get("multianimalproject", False): scmap, locref, paf = predictma.extract_cnn_output( outputs_np, dlc_cfg) pagraph = dlc_cfg["partaffinityfield_graph"] else: scmap, locref = predict.extract_cnn_output( outputs_np, dlc_cfg) paf = None pagraph = [] peaks = outputs_np[-1] if imageindex in testIndices: trainingfram = False else: trainingfram = True DATA[imageindex] = [ image, scmap, locref, paf, peaks, bptnames, pagraph, imagename, trainingfram, ] Maps[trainFraction][Snapshots[snapindex]] = DATA os.chdir(str(start_path)) return Maps
def extract_save_all_maps( config, shuffle=1, trainingsetindex=0, comparisonbodyparts="all", extract_paf=True, all_paf_in_one=True, gputouse=None, rescale=False, Indices=None, modelprefix="", dest_folder=None, ): """ Extracts the scoremap, location refinement field and part affinity field prediction of the model. The maps will be rescaled to the size of the input image and stored in the corresponding model folder in /evaluation-results. ---------- config : string Full path of the config.yaml file as a string. shuffle: integer integers specifying shuffle index of the training dataset. The default is 1. trainingsetindex: int, optional Integer specifying which TrainingsetFraction to use. By default the first (note that TrainingFraction is a list in config.yaml). This variable can also be set to "all". comparisonbodyparts: list of bodyparts, Default is "all". The average error will be computed for those body parts only (Has to be a subset of the body parts). extract_paf : bool Extract part affinity fields by default. Note that turning it off will make the function much faster. all_paf_in_one : bool By default, all part affinity fields are displayed on a single frame. If false, individual fields are shown on separate frames. Indices: default None For which images shall the scmap/locref and paf be computed? Give a list of images nplots_per_row: int, optional (default=None) Number of plots per row in grid plots. By default, calculated to approximate a squared grid of plots Examples -------- Calculated maps for images 0, 1 and 33. >>> deeplabcut.extract_save_all_maps('/analysis/project/reaching-task/config.yaml', shuffle=1,Indices=[0,1,33]) """ from deeplabcut.utils.auxiliaryfunctions import ( read_config, attempttomakefolder, get_evaluation_folder, IntersectionofBodyPartsandOnesGivenbyUser, ) from tqdm import tqdm cfg = read_config(config) data = extract_maps(config, shuffle, trainingsetindex, gputouse, rescale, Indices, modelprefix) comparisonbodyparts = IntersectionofBodyPartsandOnesGivenbyUser( cfg, comparisonbodyparts) print("Saving plots...") for frac, values in data.items(): if not dest_folder: dest_folder = os.path.join( cfg["project_path"], str( get_evaluation_folder(frac, shuffle, cfg, modelprefix=modelprefix)), "maps", ) attempttomakefolder(dest_folder) filepath = "{imname}_{map}_{label}_{shuffle}_{frac}_{snap}.png" dest_path = os.path.join(dest_folder, filepath) for snap, maps in values.items(): for imagenr in tqdm(maps): ( image, scmap, locref, paf, peaks, bptnames, pafgraph, impath, trainingframe, ) = maps[imagenr] if not extract_paf: paf = None label = "train" if trainingframe else "test" imname = impath[-1] scmap, (locref_x, locref_y), paf = resize_all_maps( image, scmap, locref, paf) to_plot = [ i for i, bpt in enumerate(bptnames) if bpt in comparisonbodyparts ] list_of_inds = [] for n, edge in enumerate(pafgraph): if any(ind in to_plot for ind in edge): list_of_inds.append([(2 * n, 2 * n + 1), (bptnames[edge[0]], bptnames[edge[1]])]) if len(to_plot) > 1: map_ = scmap[:, :, to_plot].sum(axis=2) locref_x_ = locref_x[:, :, to_plot].sum(axis=2) locref_y_ = locref_y[:, :, to_plot].sum(axis=2) elif len(to_plot) == 1 and len(bptnames) > 1: map_ = scmap[:, :, to_plot] locref_x_ = locref_x[:, :, to_plot] locref_y_ = locref_y[:, :, to_plot] else: map_ = scmap[..., 0] locref_x_ = locref_x[..., 0] locref_y_ = locref_y[..., 0] fig1, _ = visualize_scoremaps(image, map_) temp = dest_path.format( imname=imname, map="scmap", label=label, shuffle=shuffle, frac=frac, snap=snap, ) fig1.savefig(temp) fig2, _ = visualize_locrefs(image, map_, locref_x_, locref_y_) temp = dest_path.format( imname=imname, map="locref", label=label, shuffle=shuffle, frac=frac, snap=snap, ) fig2.savefig(temp) if paf is not None: if not all_paf_in_one: for inds, names in list_of_inds: fig3, _ = visualize_paf(image, paf[:, :, [inds]]) temp = dest_path.format( imname=imname, map=f'paf_{"_".join(names)}', label=label, shuffle=shuffle, frac=frac, snap=snap, ) fig3.savefig(temp) else: inds = [elem[0] for elem in list_of_inds] n_inds = len(inds) cmap = plt.cm.get_cmap(cfg["colormap"], n_inds) colors = cmap(range(n_inds)) fig3, _ = visualize_paf(image, paf[:, :, inds], colors=colors) temp = dest_path.format( imname=imname, map=f"paf", label=label, shuffle=shuffle, frac=frac, snap=snap, ) fig3.savefig(temp) plt.close("all")
def evaluate_multianimal_full( config, Shuffles=[1], trainingsetindex=0, plotting=False, show_errors=True, comparisonbodyparts="all", gputouse=None, modelprefix="", ): from deeplabcut.pose_estimation_tensorflow.core import ( predict, predict_multianimal as predictma, ) from deeplabcut.utils import ( auxiliaryfunctions, auxfun_multianimal, auxfun_videos, conversioncode, ) import tensorflow as tf if "TF_CUDNN_USE_AUTOTUNE" in os.environ: del os.environ[ "TF_CUDNN_USE_AUTOTUNE"] # was potentially set during training tf.compat.v1.reset_default_graph() os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" # if gputouse is not None: # gpu selectinon os.environ["CUDA_VISIBLE_DEVICES"] = str(gputouse) start_path = os.getcwd() if plotting is True: plotting = "bodypart" ################################################## # Load data... ################################################## cfg = auxiliaryfunctions.read_config(config) if trainingsetindex == "all": TrainingFractions = cfg["TrainingFraction"] else: TrainingFractions = [cfg["TrainingFraction"][trainingsetindex]] # Loading human annotatated data trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder(cfg) Data = pd.read_hdf( os.path.join( cfg["project_path"], str(trainingsetfolder), "CollectedData_" + cfg["scorer"] + ".h5", )) conversioncode.guarantee_multiindex_rows(Data) # Get list of body parts to evaluate network for comparisonbodyparts = auxiliaryfunctions.IntersectionofBodyPartsandOnesGivenbyUser( cfg, comparisonbodyparts) all_bpts = np.asarray( len(cfg["individuals"]) * cfg["multianimalbodyparts"] + cfg["uniquebodyparts"]) colors = visualization.get_cmap(len(comparisonbodyparts), name=cfg["colormap"]) # Make folder for evaluation auxiliaryfunctions.attempttomakefolder( str(cfg["project_path"] + "/evaluation-results/")) for shuffle in Shuffles: for trainFraction in TrainingFractions: ################################################## # Load and setup CNN part detector ################################################## datafn, metadatafn = auxiliaryfunctions.GetDataandMetaDataFilenames( trainingsetfolder, trainFraction, shuffle, cfg) modelfolder = os.path.join( cfg["project_path"], str( auxiliaryfunctions.get_model_folder( trainFraction, shuffle, cfg, modelprefix=modelprefix)), ) path_test_config = Path(modelfolder) / "test" / "pose_cfg.yaml" # Load meta data ( data, trainIndices, testIndices, trainFraction, ) = auxiliaryfunctions.LoadMetadata( os.path.join(cfg["project_path"], metadatafn)) try: dlc_cfg = load_config(str(path_test_config)) except FileNotFoundError: raise FileNotFoundError( "It seems the model for shuffle %s and trainFraction %s does not exist." % (shuffle, trainFraction)) pipeline = iaa.Sequential(random_order=False) pre_resize = dlc_cfg.get("pre_resize") if pre_resize: width, height = pre_resize pipeline.add(iaa.Resize({"height": height, "width": width})) # TODO: IMPLEMENT for different batch sizes? dlc_cfg["batch_size"] = 1 # due to differently sized images!!! stride = dlc_cfg["stride"] # Ignore best edges possibly defined during a prior evaluation _ = dlc_cfg.pop("paf_best", None) joints = dlc_cfg["all_joints_names"] # Create folder structure to store results. evaluationfolder = os.path.join( cfg["project_path"], str( auxiliaryfunctions.get_evaluation_folder( trainFraction, shuffle, cfg, modelprefix=modelprefix)), ) auxiliaryfunctions.attempttomakefolder(evaluationfolder, recursive=True) # path_train_config = modelfolder / 'train' / 'pose_cfg.yaml' # Check which snapshots are available and sort them by # iterations Snapshots = np.array([ fn.split(".")[0] for fn in os.listdir(os.path.join(str(modelfolder), "train")) if "index" in fn ]) if len(Snapshots) == 0: print( "Snapshots not found! It seems the dataset for shuffle %s and trainFraction %s is not trained.\nPlease train it before evaluating.\nUse the function 'train_network' to do so." % (shuffle, trainFraction)) else: increasing_indices = np.argsort( [int(m.split("-")[1]) for m in Snapshots]) Snapshots = Snapshots[increasing_indices] if cfg["snapshotindex"] == -1: snapindices = [-1] elif cfg["snapshotindex"] == "all": snapindices = range(len(Snapshots)) elif cfg["snapshotindex"] < len(Snapshots): snapindices = [cfg["snapshotindex"]] else: print( "Invalid choice, only -1 (last), any integer up to last, or all (as string)!" ) final_result = [] ################################################## # Compute predictions over images ################################################## for snapindex in snapindices: dlc_cfg["init_weights"] = os.path.join( str(modelfolder), "train", Snapshots[snapindex] ) # setting weights to corresponding snapshot. trainingsiterations = ( dlc_cfg["init_weights"].split(os.sep)[-1] ).split( "-" )[-1] # read how many training siterations that corresponds to. # name for deeplabcut net (based on its parameters) DLCscorer, DLCscorerlegacy = auxiliaryfunctions.GetScorerName( cfg, shuffle, trainFraction, trainingsiterations, modelprefix=modelprefix, ) print( "Running ", DLCscorer, " with # of trainingiterations:", trainingsiterations, ) ( notanalyzed, resultsfilename, DLCscorer, ) = auxiliaryfunctions.CheckifNotEvaluated( str(evaluationfolder), DLCscorer, DLCscorerlegacy, Snapshots[snapindex], ) data_path = resultsfilename.split( ".h5")[0] + "_full.pickle" if plotting: foldername = os.path.join( str(evaluationfolder), "LabeledImages_" + DLCscorer + "_" + Snapshots[snapindex], ) auxiliaryfunctions.attempttomakefolder(foldername) if plotting == "bodypart": fig, ax = visualization.create_minimal_figure() if os.path.isfile(data_path): print("Model already evaluated.", resultsfilename) else: ( sess, inputs, outputs, ) = predict.setup_pose_prediction(dlc_cfg) PredicteData = {} dist = np.full((len(Data), len(all_bpts)), np.nan) conf = np.full_like(dist, np.nan) print("Network Evaluation underway...") for imageindex, imagename in tqdm(enumerate( Data.index)): image_path = os.path.join(cfg["project_path"], *imagename) frame = auxfun_videos.imread(image_path, mode="skimage") GT = Data.iloc[imageindex] if not GT.any(): continue # Pass the image and the keypoints through the resizer; # this has no effect if no augmenters were added to it. keypoints = [ GT.to_numpy().reshape((-1, 2)).astype(float) ] frame_, keypoints = pipeline(images=[frame], keypoints=keypoints) frame = frame_[0] GT[:] = keypoints[0].flatten() df = GT.unstack("coords").reindex( joints, level="bodyparts") # FIXME Is having an empty array vs nan really that necessary?! groundtruthidentity = list( df.index.get_level_values( "individuals").to_numpy().reshape((-1, 1))) groundtruthcoordinates = list( df.values[:, np.newaxis]) for i, coords in enumerate(groundtruthcoordinates): if np.isnan(coords).any(): groundtruthcoordinates[i] = np.empty( (0, 2), dtype=float) groundtruthidentity[i] = np.array( [], dtype=str) # Form 2D array of shape (n_rows, 4) where the last dimension # is (sample_index, peak_y, peak_x, bpt_index) to slice the PAFs. temp = df.reset_index(level="bodyparts").dropna() temp["bodyparts"].replace( dict(zip(joints, range(len(joints)))), inplace=True, ) temp["sample"] = 0 peaks_gt = temp.loc[:, [ "sample", "y", "x", "bodyparts" ]].to_numpy() peaks_gt[:, 1:3] = (peaks_gt[:, 1:3] - stride // 2) / stride pred = predictma.predict_batched_peaks_and_costs( dlc_cfg, np.expand_dims(frame, axis=0), sess, inputs, outputs, peaks_gt.astype(int), ) if not pred: continue else: pred = pred[0] PredicteData[imagename] = {} PredicteData[imagename]["index"] = imageindex PredicteData[imagename]["prediction"] = pred PredicteData[imagename]["groundtruth"] = [ groundtruthidentity, groundtruthcoordinates, GT, ] coords_pred = pred["coordinates"][0] probs_pred = pred["confidence"] for bpt, xy_gt in df.groupby(level="bodyparts"): inds_gt = np.flatnonzero( np.all(~np.isnan(xy_gt), axis=1)) n_joint = joints.index(bpt) xy = coords_pred[n_joint] if inds_gt.size and xy.size: # Pick the predictions closest to ground truth, # rather than the ones the model has most confident in xy_gt_values = xy_gt.iloc[inds_gt].values neighbors = _find_closest_neighbors( xy_gt_values, xy, k=3) found = neighbors != -1 min_dists = np.linalg.norm( xy_gt_values[found] - xy[neighbors[found]], axis=1, ) inds = np.flatnonzero(all_bpts == bpt) sl = imageindex, inds[inds_gt[found]] dist[sl] = min_dists conf[sl] = probs_pred[n_joint][ neighbors[found]].squeeze() if plotting == "bodypart": temp_xy = GT.unstack( "bodyparts")[joints].values gt = temp_xy.reshape( (-1, 2, temp_xy.shape[1])).T.swapaxes(1, 2) h, w, _ = np.shape(frame) fig.set_size_inches(w / 100, h / 100) ax.set_xlim(0, w) ax.set_ylim(0, h) ax.invert_yaxis() ax = visualization.make_multianimal_labeled_image( frame, gt, coords_pred, probs_pred, colors, cfg["dotsize"], cfg["alphavalue"], cfg["pcutoff"], ax=ax, ) visualization.save_labeled_frame( fig, image_path, foldername, imageindex in trainIndices, ) visualization.erase_artists(ax) sess.close() # closes the current tf session # Compute all distance statistics df_dist = pd.DataFrame(dist, columns=df.index) df_conf = pd.DataFrame(conf, columns=df.index) df_joint = pd.concat( [df_dist, df_conf], keys=["rmse", "conf"], names=["metrics"], axis=1, ) df_joint = df_joint.reorder_levels(list( np.roll(df_joint.columns.names, -1)), axis=1) df_joint.sort_index( axis=1, level=["individuals", "bodyparts"], ascending=[True, True], inplace=True, ) write_path = os.path.join( evaluationfolder, f"dist_{trainingsiterations}.csv") df_joint.to_csv(write_path) # Calculate overall prediction error error = df_joint.xs("rmse", level="metrics", axis=1) mask = (df_joint.xs("conf", level="metrics", axis=1) >= cfg["pcutoff"]) error_masked = error[mask] error_train = np.nanmean(error.iloc[trainIndices]) error_train_cut = np.nanmean( error_masked.iloc[trainIndices]) error_test = np.nanmean(error.iloc[testIndices]) error_test_cut = np.nanmean( error_masked.iloc[testIndices]) results = [ trainingsiterations, int(100 * trainFraction), shuffle, np.round(error_train, 2), np.round(error_test, 2), cfg["pcutoff"], np.round(error_train_cut, 2), np.round(error_test_cut, 2), ] final_result.append(results) if show_errors: string = ( "Results for {} training iterations, training fraction of {}, and shuffle {}:\n" "Train error: {} pixels. Test error: {} pixels.\n" "With pcutoff of {}:\n" "Train error: {} pixels. Test error: {} pixels." ) print(string.format(*results)) print("##########################################") print( "Average Euclidean distance to GT per individual (in pixels; test-only)" ) print(error_masked.iloc[testIndices].groupby( "individuals", axis=1).mean().mean().to_string()) print( "Average Euclidean distance to GT per bodypart (in pixels; test-only)" ) print(error_masked.iloc[testIndices].groupby( "bodyparts", axis=1).mean().mean().to_string()) PredicteData["metadata"] = { "nms radius": dlc_cfg["nmsradius"], "minimal confidence": dlc_cfg["minconfidence"], "sigma": dlc_cfg.get("sigma", 1), "PAFgraph": dlc_cfg["partaffinityfield_graph"], "PAFinds": np.arange(len(dlc_cfg["partaffinityfield_graph"])), "all_joints": [[i] for i in range(len(dlc_cfg["all_joints"]))], "all_joints_names": [ dlc_cfg["all_joints_names"][i] for i in range(len(dlc_cfg["all_joints"])) ], "stride": dlc_cfg.get("stride", 8), } print( "Done and results stored for snapshot: ", Snapshots[snapindex], ) dictionary = { "Scorer": DLCscorer, "DLC-model-config file": dlc_cfg, "trainIndices": trainIndices, "testIndices": testIndices, "trainFraction": trainFraction, } metadata = {"data": dictionary} _ = auxfun_multianimal.SaveFullMultiAnimalData( PredicteData, metadata, resultsfilename) tf.compat.v1.reset_default_graph() n_multibpts = len(cfg["multianimalbodyparts"]) if n_multibpts == 1: continue # Skip data-driven skeleton selection unless # the model was trained on the full graph. max_n_edges = n_multibpts * (n_multibpts - 1) // 2 n_edges = len(dlc_cfg["partaffinityfield_graph"]) if n_edges == max_n_edges: print("Selecting best skeleton...") n_graphs = 10 paf_inds = None else: n_graphs = 1 paf_inds = [list(range(n_edges))] ( results, paf_scores, best_assemblies, ) = crossvalutils.cross_validate_paf_graphs( config, str(path_test_config).replace("pose_", "inference_"), data_path, data_path.replace("_full.", "_meta."), n_graphs=n_graphs, paf_inds=paf_inds, oks_sigma=dlc_cfg.get("oks_sigma", 0.1), margin=dlc_cfg.get("bbox_margin", 0), symmetric_kpts=dlc_cfg.get("symmetric_kpts"), ) if plotting == "individual": assemblies, assemblies_unique, image_paths = best_assemblies fig, ax = visualization.create_minimal_figure() n_animals = len(cfg["individuals"]) if cfg["uniquebodyparts"]: n_animals += 1 colors = visualization.get_cmap(n_animals, name=cfg["colormap"]) for k, v in tqdm(assemblies.items()): imname = image_paths[k] image_path = os.path.join(cfg["project_path"], *imname) frame = auxfun_videos.imread(image_path, mode="skimage") h, w, _ = np.shape(frame) fig.set_size_inches(w / 100, h / 100) ax.set_xlim(0, w) ax.set_ylim(0, h) ax.invert_yaxis() gt = [ s.to_numpy().reshape((-1, 2)) for _, s in Data.loc[imname].groupby("individuals") ] coords_pred = [] coords_pred += [ass.xy for ass in v] probs_pred = [] probs_pred += [ass.data[:, 2:3] for ass in v] if assemblies_unique is not None: unique = assemblies_unique.get(k, None) if unique is not None: coords_pred.append(unique[:, :2]) probs_pred.append(unique[:, 2:3]) while len(coords_pred) < len(gt): coords_pred.append(np.full((1, 2), np.nan)) probs_pred.append(np.full((1, 2), np.nan)) ax = visualization.make_multianimal_labeled_image( frame, gt, coords_pred, probs_pred, colors, cfg["dotsize"], cfg["alphavalue"], cfg["pcutoff"], ax=ax, ) visualization.save_labeled_frame( fig, image_path, foldername, k in trainIndices, ) visualization.erase_artists(ax) df = results[1].copy() df.loc(axis=0)[("mAP_train", "mean")] = [ d[0]["mAP"] for d in results[2] ] df.loc(axis=0)[("mAR_train", "mean")] = [ d[0]["mAR"] for d in results[2] ] df.loc(axis=0)[("mAP_test", "mean")] = [ d[1]["mAP"] for d in results[2] ] df.loc(axis=0)[("mAR_test", "mean")] = [ d[1]["mAR"] for d in results[2] ] with open(data_path.replace("_full.", "_map."), "wb") as file: pickle.dump((df, paf_scores), file) if len(final_result ) > 0: # Only append if results were calculated make_results_file(final_result, evaluationfolder, DLCscorer) os.chdir(str(start_path))