Exemplo n.º 1
0
def evaluate_network(
    config,
    Shuffles=[1],
    trainingsetindex=0,
    plotting=False,
    show_errors=True,
    comparisonbodyparts="all",
    gputouse=None,
    rescale=False,
    modelprefix="",
):
    """Evaluates the network.

    Evaluates the network based on the saved models at different stages of the training
    network. The evaluation results are stored in the .h5 and .csv file under the
    subdirectory 'evaluation_results'. Change the snapshotindex parameter in the config
    file to 'all' in order to evaluate all the saved models.

    Parameters
    ----------
    config : string
        Full path of the config.yaml file.

    Shuffles: list, optional, default=[1]
        List of integers specifying the shuffle indices of the training dataset.

    trainingsetindex: int or str, optional, default=0
        Integer specifying which "TrainingsetFraction" to use.
        Note that "TrainingFraction" is a list in config.yaml. This variable can also
        be set to "all".

    plotting: bool or str, optional, default=False
        Plots the predictions on the train and test images.
        If provided it must be either ``True``, ``False``, ``"bodypart"``, or
        ``"individual"``. Setting to ``True`` defaults as ``"bodypart"`` for
        multi-animal projects.

    show_errors: bool, optional, default=True
        Display train and test errors.

    comparisonbodyparts: str or list, optional, default="all"
        The average error will be computed for those body parts only.
        The provided list has to be a subset of the defined body parts.

    gputouse: int or None, optional, default=None
        Indicates the GPU to use (see number in ``nvidia-smi``). If you do not have a
        GPU put `None``.
        See: https://nvidia.custhelp.com/app/answers/detail/a_id/3751/~/useful-nvidia-smi-queries

    rescale: bool, optional, default=False
        Evaluate the model at the ``'global_scale'`` variable (as set in the
        ``pose_config.yaml`` file for a particular project). I.e. every image will be
        resized according to that scale and prediction will be compared to the resized
        ground truth. The error will be reported in pixels at rescaled to the
        *original* size. I.e. For a [200,200] pixel image evaluated at
        ``global_scale=.5``, the predictions are calculated on [100,100] pixel images,
        compared to 1/2*ground truth and this error is then multiplied by 2!.
        The evaluation images are also shown for the original size!

    modelprefix: str, optional, default=""
        Directory containing the deeplabcut models to use when evaluating the network.
        By default, the models are assumed to exist in the project folder.

    Returns
    -------
    None

    Examples
    --------
    If you do not want to plot and evaluate with shuffle set to 1.

    >>> deeplabcut.evaluate_network(
            '/analysis/project/reaching-task/config.yaml', Shuffles=[1],
        )

    If you want to plot and evaluate with shuffle set to 0 and 1.

    >>> deeplabcut.evaluate_network(
            '/analysis/project/reaching-task/config.yaml',
            Shuffles=[0, 1],
            plotting=True,
        )

    If you want to plot assemblies for a maDLC project

    >>> deeplabcut.evaluate_network(
            '/analysis/project/reaching-task/config.yaml',
            Shuffles=[1],
            plotting="individual",
        )

    Note: This defaults to standard plotting for single-animal projects.
    """
    if plotting not in (True, False, "bodypart", "individual"):
        raise ValueError(f"Unknown value for `plotting`={plotting}")

    import os

    start_path = os.getcwd()
    from deeplabcut.utils import auxiliaryfunctions

    cfg = auxiliaryfunctions.read_config(config)

    if cfg.get("multianimalproject", False):
        from .evaluate_multianimal import evaluate_multianimal_full

        # TODO: Make this code not so redundant!
        evaluate_multianimal_full(
            config=config,
            Shuffles=Shuffles,
            trainingsetindex=trainingsetindex,
            plotting=plotting,
            comparisonbodyparts=comparisonbodyparts,
            gputouse=gputouse,
            modelprefix=modelprefix,
        )
    else:
        from deeplabcut.utils.auxfun_videos import imread, imresize
        from deeplabcut.pose_estimation_tensorflow.core import predict
        from deeplabcut.pose_estimation_tensorflow.config import load_config
        from deeplabcut.pose_estimation_tensorflow.datasets.utils import data_to_input
        from deeplabcut.utils import auxiliaryfunctions, conversioncode
        import tensorflow as tf

        # If a string was passed in, auto-convert to True for backward compatibility
        plotting = bool(plotting)

        if "TF_CUDNN_USE_AUTOTUNE" in os.environ:
            del os.environ[
                "TF_CUDNN_USE_AUTOTUNE"
            ]  # was potentially set during training

        tf.compat.v1.reset_default_graph()
        os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"  #
        #    tf.logging.set_verbosity(tf.logging.WARN)

        start_path = os.getcwd()
        # Read file path for pose_config file. >> pass it on
        cfg = auxiliaryfunctions.read_config(config)
        if gputouse is not None:  # gpu selectinon
            os.environ["CUDA_VISIBLE_DEVICES"] = str(gputouse)

        if trainingsetindex == "all":
            TrainingFractions = cfg["TrainingFraction"]
        else:
            if (
                trainingsetindex < len(cfg["TrainingFraction"])
                and trainingsetindex >= 0
            ):
                TrainingFractions = [cfg["TrainingFraction"][int(trainingsetindex)]]
            else:
                raise Exception(
                    "Please check the trainingsetindex! ",
                    trainingsetindex,
                    " should be an integer from 0 .. ",
                    int(len(cfg["TrainingFraction"]) - 1),
                )

        # Loading human annotatated data
        trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder(cfg)
        Data = pd.read_hdf(
            os.path.join(
                cfg["project_path"],
                str(trainingsetfolder),
                "CollectedData_" + cfg["scorer"] + ".h5",
            )
        )

        # Get list of body parts to evaluate network for
        comparisonbodyparts = auxiliaryfunctions.IntersectionofBodyPartsandOnesGivenbyUser(
            cfg, comparisonbodyparts
        )
        # Make folder for evaluation
        auxiliaryfunctions.attempttomakefolder(
            str(cfg["project_path"] + "/evaluation-results/")
        )
        for shuffle in Shuffles:
            for trainFraction in TrainingFractions:
                ##################################################
                # Load and setup CNN part detector
                ##################################################
                datafn, metadatafn = auxiliaryfunctions.GetDataandMetaDataFilenames(
                    trainingsetfolder, trainFraction, shuffle, cfg
                )
                modelfolder = os.path.join(
                    cfg["project_path"],
                    str(
                        auxiliaryfunctions.get_model_folder(
                            trainFraction, shuffle, cfg, modelprefix=modelprefix
                        )
                    ),
                )

                path_test_config = Path(modelfolder) / "test" / "pose_cfg.yaml"
                # Load meta data
                (
                    data,
                    trainIndices,
                    testIndices,
                    trainFraction,
                ) = auxiliaryfunctions.LoadMetadata(
                    os.path.join(cfg["project_path"], metadatafn)
                )

                try:
                    dlc_cfg = load_config(str(path_test_config))
                except FileNotFoundError:
                    raise FileNotFoundError(
                        "It seems the model for shuffle %s and trainFraction %s does not exist."
                        % (shuffle, trainFraction)
                    )

                # change batch size, if it was edited during analysis!
                dlc_cfg["batch_size"] = 1  # in case this was edited for analysis.

                # Create folder structure to store results.
                evaluationfolder = os.path.join(
                    cfg["project_path"],
                    str(
                        auxiliaryfunctions.get_evaluation_folder(
                            trainFraction, shuffle, cfg, modelprefix=modelprefix
                        )
                    ),
                )
                auxiliaryfunctions.attempttomakefolder(evaluationfolder, recursive=True)
                # path_train_config = modelfolder / 'train' / 'pose_cfg.yaml'

                # Check which snapshots are available and sort them by # iterations
                Snapshots = np.array(
                    [
                        fn.split(".")[0]
                        for fn in os.listdir(os.path.join(str(modelfolder), "train"))
                        if "index" in fn
                    ]
                )
                try:  # check if any where found?
                    Snapshots[0]
                except IndexError:
                    raise FileNotFoundError(
                        "Snapshots not found! It seems the dataset for shuffle %s and trainFraction %s is not trained.\nPlease train it before evaluating.\nUse the function 'train_network' to do so."
                        % (shuffle, trainFraction)
                    )

                increasing_indices = np.argsort(
                    [int(m.split("-")[1]) for m in Snapshots]
                )
                Snapshots = Snapshots[increasing_indices]

                if cfg["snapshotindex"] == -1:
                    snapindices = [-1]
                elif cfg["snapshotindex"] == "all":
                    snapindices = range(len(Snapshots))
                elif cfg["snapshotindex"] < len(Snapshots):
                    snapindices = [cfg["snapshotindex"]]
                else:
                    raise ValueError(
                        "Invalid choice, only -1 (last), any integer up to last, or all (as string)!"
                    )

                final_result = []

                ########################### RESCALING (to global scale)
                if rescale:
                    scale = dlc_cfg["global_scale"]
                    Data = (
                        pd.read_hdf(
                            os.path.join(
                                cfg["project_path"],
                                str(trainingsetfolder),
                                "CollectedData_" + cfg["scorer"] + ".h5",
                            )
                        )
                        * scale
                    )
                else:
                    scale = 1

                conversioncode.guarantee_multiindex_rows(Data)
                ##################################################
                # Compute predictions over images
                ##################################################
                for snapindex in snapindices:
                    dlc_cfg["init_weights"] = os.path.join(
                        str(modelfolder), "train", Snapshots[snapindex]
                    )  # setting weights to corresponding snapshot.
                    trainingsiterations = (
                        dlc_cfg["init_weights"].split(os.sep)[-1]
                    ).split("-")[
                        -1
                    ]  # read how many training siterations that corresponds to.

                    # Name for deeplabcut net (based on its parameters)
                    DLCscorer, DLCscorerlegacy = auxiliaryfunctions.GetScorerName(
                        cfg,
                        shuffle,
                        trainFraction,
                        trainingsiterations,
                        modelprefix=modelprefix,
                    )
                    print(
                        "Running ",
                        DLCscorer,
                        " with # of training iterations:",
                        trainingsiterations,
                    )
                    (
                        notanalyzed,
                        resultsfilename,
                        DLCscorer,
                    ) = auxiliaryfunctions.CheckifNotEvaluated(
                        str(evaluationfolder),
                        DLCscorer,
                        DLCscorerlegacy,
                        Snapshots[snapindex],
                    )
                    if notanalyzed:
                        # Specifying state of model (snapshot / training state)
                        sess, inputs, outputs = predict.setup_pose_prediction(dlc_cfg)
                        Numimages = len(Data.index)
                        PredicteData = np.zeros(
                            (Numimages, 3 * len(dlc_cfg["all_joints_names"]))
                        )
                        print("Running evaluation ...")
                        for imageindex, imagename in tqdm(enumerate(Data.index)):
                            image = imread(
                                os.path.join(cfg["project_path"], *imagename),
                                mode="skimage",
                            )
                            if scale != 1:
                                image = imresize(image, scale)

                            image_batch = data_to_input(image)
                            # Compute prediction with the CNN
                            outputs_np = sess.run(
                                outputs, feed_dict={inputs: image_batch}
                            )
                            scmap, locref = predict.extract_cnn_output(
                                outputs_np, dlc_cfg
                            )

                            # Extract maximum scoring location from the heatmap, assume 1 person
                            pose = predict.argmax_pose_predict(
                                scmap, locref, dlc_cfg["stride"]
                            )
                            PredicteData[
                                imageindex, :
                            ] = (
                                pose.flatten()
                            )  # NOTE: thereby     cfg_test['all_joints_names'] should be same order as bodyparts!

                        sess.close()  # closes the current tf session

                        index = pd.MultiIndex.from_product(
                            [
                                [DLCscorer],
                                dlc_cfg["all_joints_names"],
                                ["x", "y", "likelihood"],
                            ],
                            names=["scorer", "bodyparts", "coords"],
                        )

                        # Saving results
                        DataMachine = pd.DataFrame(
                            PredicteData, columns=index, index=Data.index
                        )
                        DataMachine.to_hdf(resultsfilename, "df_with_missing")

                        print(
                            "Analysis is done and the results are stored (see evaluation-results) for snapshot: ",
                            Snapshots[snapindex],
                        )
                        DataCombined = pd.concat(
                            [Data.T, DataMachine.T], axis=0, sort=False
                        ).T

                        RMSE, RMSEpcutoff = pairwisedistances(
                            DataCombined,
                            cfg["scorer"],
                            DLCscorer,
                            cfg["pcutoff"],
                            comparisonbodyparts,
                        )
                        testerror = np.nanmean(RMSE.iloc[testIndices].values.flatten())
                        trainerror = np.nanmean(
                            RMSE.iloc[trainIndices].values.flatten()
                        )
                        testerrorpcutoff = np.nanmean(
                            RMSEpcutoff.iloc[testIndices].values.flatten()
                        )
                        trainerrorpcutoff = np.nanmean(
                            RMSEpcutoff.iloc[trainIndices].values.flatten()
                        )
                        results = [
                            trainingsiterations,
                            int(100 * trainFraction),
                            shuffle,
                            np.round(trainerror, 2),
                            np.round(testerror, 2),
                            cfg["pcutoff"],
                            np.round(trainerrorpcutoff, 2),
                            np.round(testerrorpcutoff, 2),
                        ]
                        final_result.append(results)

                        if show_errors:
                            print(
                                "Results for",
                                trainingsiterations,
                                " training iterations:",
                                int(100 * trainFraction),
                                shuffle,
                                "train error:",
                                np.round(trainerror, 2),
                                "pixels. Test error:",
                                np.round(testerror, 2),
                                " pixels.",
                            )
                            print(
                                "With pcutoff of",
                                cfg["pcutoff"],
                                " train error:",
                                np.round(trainerrorpcutoff, 2),
                                "pixels. Test error:",
                                np.round(testerrorpcutoff, 2),
                                "pixels",
                            )
                            if scale != 1:
                                print(
                                    "The predictions have been calculated for rescaled images (and rescaled ground truth). Scale:",
                                    scale,
                                )
                            print(
                                "Thereby, the errors are given by the average distances between the labels by DLC and the scorer."
                            )

                        if plotting:
                            print("Plotting...")
                            foldername = os.path.join(
                                str(evaluationfolder),
                                "LabeledImages_"
                                + DLCscorer
                                + "_"
                                + Snapshots[snapindex],
                            )
                            auxiliaryfunctions.attempttomakefolder(foldername)
                            Plotting(
                                cfg,
                                comparisonbodyparts,
                                DLCscorer,
                                trainIndices,
                                DataCombined * 1.0 / scale,
                                foldername,
                            )  # Rescaling coordinates to have figure in original size!

                        tf.compat.v1.reset_default_graph()
                        # print(final_result)
                    else:
                        DataMachine = pd.read_hdf(resultsfilename)
                        conversioncode.guarantee_multiindex_rows(DataMachine)
                        if plotting:
                            DataCombined = pd.concat(
                                [Data.T, DataMachine.T], axis=0, sort=False
                            ).T
                            print(
                                "Plotting...(attention scale might be inconsistent in comparison to when data was analyzed; i.e. if you used rescale)"
                            )
                            foldername = os.path.join(
                                str(evaluationfolder),
                                "LabeledImages_"
                                + DLCscorer
                                + "_"
                                + Snapshots[snapindex],
                            )
                            auxiliaryfunctions.attempttomakefolder(foldername)
                            Plotting(
                                cfg,
                                comparisonbodyparts,
                                DLCscorer,
                                trainIndices,
                                DataCombined * 1.0 / scale,
                                foldername,
                            )

                if len(final_result) > 0:  # Only append if results were calculated
                    make_results_file(final_result, evaluationfolder, DLCscorer)
                    print(
                        "The network is evaluated and the results are stored in the subdirectory 'evaluation_results'."
                    )
                    print(
                        "Please check the results, then choose the best model (snapshot) for prediction. You can update the config.yaml file with the appropriate index for the 'snapshotindex'.\nUse the function 'analyze_video' to make predictions on new videos."
                    )
                    print(
                        "Otherwise, consider adding more labeled-data and retraining the network (see DeepLabCut workflow Fig 2, Nath 2019)"
                    )

    # returning to initial folder
    os.chdir(str(start_path))
Exemplo n.º 2
0
def return_evaluate_network_data(
    config,
    shuffle=0,
    trainingsetindex=0,
    comparisonbodyparts="all",
    Snapindex=None,
    rescale=False,
    fulldata=False,
    show_errors=True,
    modelprefix="",
    returnjustfns=True,
):
    """
    Returns the results for (previously evaluated) network. deeplabcut.evaluate_network(..)
    Returns list of (per model): [trainingsiterations,trainfraction,shuffle,trainerror,testerror,pcutoff,trainerrorpcutoff,testerrorpcutoff,Snapshots[snapindex],scale,net_type]

    If fulldata=True, also returns (the complete annotation and prediction array)
    Returns list of: (DataMachine, Data, data, trainIndices, testIndices, trainFraction, DLCscorer,comparisonbodyparts, cfg, Snapshots[snapindex])
    ----------
    config : string
        Full path of the config.yaml file as a string.

    shuffle: integer
        integers specifying shuffle index of the training dataset. The default is 0.

    trainingsetindex: int, optional
        Integer specifying which TrainingsetFraction to use. By default the first (note that TrainingFraction is a list in config.yaml). This
        variable can also be set to "all".

    comparisonbodyparts: list of bodyparts, Default is "all".
        The average error will be computed for those body parts only (Has to be a subset of the body parts).

    rescale: bool, default False
        Evaluate the model at the 'global_scale' variable (as set in the test/pose_config.yaml file for a particular project). I.e. every
        image will be resized according to that scale and prediction will be compared to the resized ground truth. The error will be reported
        in pixels at rescaled to the *original* size. I.e. For a [200,200] pixel image evaluated at global_scale=.5, the predictions are calculated
        on [100,100] pixel images, compared to 1/2*ground truth and this error is then multiplied by 2!. The evaluation images are also shown for the
        original size!

    Examples
    --------
    If you do not want to plot
    >>> deeplabcut._evaluate_network_data('/analysis/project/reaching-task/config.yaml', shuffle=[1])
    --------
    If you want to plot
    >>> deeplabcut.evaluate_network('/analysis/project/reaching-task/config.yaml',shuffle=[1],True)
    """

    import os

    from deeplabcut.pose_estimation_tensorflow.config import load_config
    from deeplabcut.utils import auxiliaryfunctions

    start_path = os.getcwd()
    # Read file path for pose_config file. >> pass it on
    cfg = auxiliaryfunctions.read_config(config)

    # Loading human annotatated data
    trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder(cfg)
    # Data=pd.read_hdf(os.path.join(cfg["project_path"],str(trainingsetfolder),'CollectedData_' + cfg["scorer"] + '.h5'),'df_with_missing')

    # Get list of body parts to evaluate network for
    comparisonbodyparts = auxiliaryfunctions.IntersectionofBodyPartsandOnesGivenbyUser(
        cfg, comparisonbodyparts
    )
    ##################################################
    # Load data...
    ##################################################
    trainFraction = cfg["TrainingFraction"][trainingsetindex]
    datafn, metadatafn = auxiliaryfunctions.GetDataandMetaDataFilenames(
        trainingsetfolder, trainFraction, shuffle, cfg
    )
    modelfolder = os.path.join(
        cfg["project_path"],
        str(
            auxiliaryfunctions.get_model_folder(
                trainFraction, shuffle, cfg, modelprefix=modelprefix
            )
        ),
    )
    path_test_config = Path(modelfolder) / "test" / "pose_cfg.yaml"
    # Load meta data
    data, trainIndices, testIndices, trainFraction = auxiliaryfunctions.LoadMetadata(
        os.path.join(cfg["project_path"], metadatafn)
    )

    try:
        dlc_cfg = load_config(str(path_test_config))
    except FileNotFoundError:
        raise FileNotFoundError(
            "It seems the model for shuffle %s and trainFraction %s does not exist."
            % (shuffle, trainFraction)
        )

    ########################### RESCALING (to global scale)
    if rescale == True:
        scale = dlc_cfg["global_scale"]
        print("Rescaling Data to ", scale)
        Data = (
            pd.read_hdf(
                os.path.join(
                    cfg["project_path"],
                    str(trainingsetfolder),
                    "CollectedData_" + cfg["scorer"] + ".h5",
                )
            )
            * scale
        )
    else:
        scale = 1
        Data = pd.read_hdf(
            os.path.join(
                cfg["project_path"],
                str(trainingsetfolder),
                "CollectedData_" + cfg["scorer"] + ".h5",
            )
        )

    evaluationfolder = os.path.join(
        cfg["project_path"],
        str(
            auxiliaryfunctions.get_evaluation_folder(
                trainFraction, shuffle, cfg, modelprefix=modelprefix
            )
        ),
    )
    # Check which snapshots are available and sort them by # iterations
    Snapshots = np.array(
        [
            fn.split(".")[0]
            for fn in os.listdir(os.path.join(str(modelfolder), "train"))
            if "index" in fn
        ]
    )

    if len(Snapshots) == 0:
        print(
            "Snapshots not found! It seems the dataset for shuffle %s and trainFraction %s is not trained.\nPlease train it before evaluating.\nUse the function 'train_network' to do so."
            % (shuffle, trainFraction)
        )
        snapindices = []
    else:
        increasing_indices = np.argsort([int(m.split("-")[1]) for m in Snapshots])
        Snapshots = Snapshots[increasing_indices]
        if Snapindex == None:
            Snapindex = cfg["snapshotindex"]

        if Snapindex == -1:
            snapindices = [-1]
        elif Snapindex == "all":
            snapindices = range(len(Snapshots))
        elif Snapindex < len(Snapshots):
            snapindices = [Snapindex]
        else:
            print(
                "Invalid choice, only -1 (last), any integer up to last, or all (as string)!"
            )

    DATA = []
    results = []
    resultsfns = []
    for snapindex in snapindices:
        dlc_cfg["init_weights"] = os.path.join(
            str(modelfolder), "train", Snapshots[snapindex]
        )  # setting weights to corresponding snapshot.
        trainingsiterations = (dlc_cfg["init_weights"].split(os.sep)[-1]).split("-")[
            -1
        ]  # read how many training siterations that corresponds to.

        # name for deeplabcut net (based on its parameters)
        DLCscorer, DLCscorerlegacy = auxiliaryfunctions.GetScorerName(
            cfg, shuffle, trainFraction, trainingsiterations, modelprefix=modelprefix
        )
        if not returnjustfns:
            print(
                "Retrieving ",
                DLCscorer,
                " with # of trainingiterations:",
                trainingsiterations,
            )

        (
            notanalyzed,
            resultsfilename,
            DLCscorer,
        ) = auxiliaryfunctions.CheckifNotEvaluated(
            str(evaluationfolder), DLCscorer, DLCscorerlegacy, Snapshots[snapindex]
        )
        # resultsfilename=os.path.join(str(evaluationfolder),DLCscorer + '-' + str(Snapshots[snapindex])+  '.h5') # + '-' + str(snapshot)+  ' #'-' + Snapshots[snapindex]+  '.h5')
        print(resultsfilename)
        resultsfns.append(resultsfilename)
        if not returnjustfns:
            if not notanalyzed and os.path.isfile(resultsfilename):  # data exists..
                DataMachine = pd.read_hdf(resultsfilename)
                DataCombined = pd.concat([Data.T, DataMachine.T], axis=0).T
                RMSE, RMSEpcutoff = pairwisedistances(
                    DataCombined,
                    cfg["scorer"],
                    DLCscorer,
                    cfg["pcutoff"],
                    comparisonbodyparts,
                )

                testerror = np.nanmean(RMSE.iloc[testIndices].values.flatten())
                trainerror = np.nanmean(RMSE.iloc[trainIndices].values.flatten())
                testerrorpcutoff = np.nanmean(
                    RMSEpcutoff.iloc[testIndices].values.flatten()
                )
                trainerrorpcutoff = np.nanmean(
                    RMSEpcutoff.iloc[trainIndices].values.flatten()
                )
                if show_errors == True:
                    print(
                        "Results for",
                        trainingsiterations,
                        " training iterations:",
                        int(100 * trainFraction),
                        shuffle,
                        "train error:",
                        np.round(trainerror, 2),
                        "pixels. Test error:",
                        np.round(testerror, 2),
                        " pixels.",
                    )
                    print(
                        "With pcutoff of",
                        cfg["pcutoff"],
                        " train error:",
                        np.round(trainerrorpcutoff, 2),
                        "pixels. Test error:",
                        np.round(testerrorpcutoff, 2),
                        "pixels",
                    )
                    print("Snapshot", Snapshots[snapindex])

                r = [
                    trainingsiterations,
                    int(100 * trainFraction),
                    shuffle,
                    np.round(trainerror, 2),
                    np.round(testerror, 2),
                    cfg["pcutoff"],
                    np.round(trainerrorpcutoff, 2),
                    np.round(testerrorpcutoff, 2),
                    Snapshots[snapindex],
                    scale,
                    dlc_cfg["net_type"],
                ]
                results.append(r)
            else:
                print("Model not trained/evaluated!")
            if fulldata == True:
                DATA.append(
                    [
                        DataMachine,
                        Data,
                        data,
                        trainIndices,
                        testIndices,
                        trainFraction,
                        DLCscorer,
                        comparisonbodyparts,
                        cfg,
                        evaluationfolder,
                        Snapshots[snapindex],
                    ]
                )

    os.chdir(start_path)
    if returnjustfns:
        return resultsfns
    else:
        if fulldata == True:
            return DATA, results
        else:
            return results
Exemplo n.º 3
0
def extract_maps(
    config,
    shuffle=0,
    trainingsetindex=0,
    gputouse=None,
    rescale=False,
    Indices=None,
    modelprefix="",
):
    """
    Extracts the scoremap, locref, partaffinityfields (if available).

    Returns a dictionary indexed by: trainingsetfraction, snapshotindex, and imageindex
    for those keys, each item contains: (image,scmap,locref,paf,bpt names,partaffinity graph, imagename, True/False if this image was in trainingset)
    ----------
    config : string
        Full path of the config.yaml file as a string.

    shuffle: integer
        integers specifying shuffle index of the training dataset. The default is 0.

    trainingsetindex: int, optional
        Integer specifying which TrainingsetFraction to use. By default the first (note that TrainingFraction is a list in config.yaml). This
        variable can also be set to "all".

    rescale: bool, default False
        Evaluate the model at the 'global_scale' variable (as set in the test/pose_config.yaml file for a particular project). I.e. every
        image will be resized according to that scale and prediction will be compared to the resized ground truth. The error will be reported
        in pixels at rescaled to the *original* size. I.e. For a [200,200] pixel image evaluated at global_scale=.5, the predictions are calculated
        on [100,100] pixel images, compared to 1/2*ground truth and this error is then multiplied by 2!. The evaluation images are also shown for the
        original size!

    Examples
    --------
    If you want to extract the data for image 0 and 103 (of the training set) for model trained with shuffle 0.
    >>> deeplabcut.extract_maps(configfile,0,Indices=[0,103])

    """
    from deeplabcut.utils.auxfun_videos import imread, imresize
    from deeplabcut.pose_estimation_tensorflow.core import (
        predict,
        predict_multianimal as predictma,
    )
    from deeplabcut.pose_estimation_tensorflow.config import load_config
    from deeplabcut.pose_estimation_tensorflow.datasets.utils import data_to_input
    from deeplabcut.utils import auxiliaryfunctions
    from tqdm import tqdm
    import tensorflow as tf

    import pandas as pd
    from pathlib import Path
    import numpy as np

    tf.compat.v1.reset_default_graph()
    os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"  #
    #    tf.logging.set_verbosity(tf.logging.WARN)

    start_path = os.getcwd()
    # Read file path for pose_config file. >> pass it on
    cfg = auxiliaryfunctions.read_config(config)

    if gputouse is not None:  # gpu selectinon
        os.environ["CUDA_VISIBLE_DEVICES"] = str(gputouse)

    if trainingsetindex == "all":
        TrainingFractions = cfg["TrainingFraction"]
    else:
        if trainingsetindex < len(
                cfg["TrainingFraction"]) and trainingsetindex >= 0:
            TrainingFractions = [
                cfg["TrainingFraction"][int(trainingsetindex)]
            ]
        else:
            raise Exception(
                "Please check the trainingsetindex! ",
                trainingsetindex,
                " should be an integer from 0 .. ",
                int(len(cfg["TrainingFraction"]) - 1),
            )

    # Loading human annotatated data
    trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder(cfg)
    Data = pd.read_hdf(
        os.path.join(
            cfg["project_path"],
            str(trainingsetfolder),
            "CollectedData_" + cfg["scorer"] + ".h5",
        ))

    # Make folder for evaluation
    auxiliaryfunctions.attempttomakefolder(
        str(cfg["project_path"] + "/evaluation-results/"))

    Maps = {}
    for trainFraction in TrainingFractions:
        Maps[trainFraction] = {}
        ##################################################
        # Load and setup CNN part detector
        ##################################################
        datafn, metadatafn = auxiliaryfunctions.GetDataandMetaDataFilenames(
            trainingsetfolder, trainFraction, shuffle, cfg)

        modelfolder = os.path.join(
            cfg["project_path"],
            str(
                auxiliaryfunctions.get_model_folder(trainFraction,
                                                    shuffle,
                                                    cfg,
                                                    modelprefix=modelprefix)),
        )
        path_test_config = Path(modelfolder) / "test" / "pose_cfg.yaml"
        # Load meta data
        (
            data,
            trainIndices,
            testIndices,
            trainFraction,
        ) = auxiliaryfunctions.LoadMetadata(
            os.path.join(cfg["project_path"], metadatafn))
        try:
            dlc_cfg = load_config(str(path_test_config))
        except FileNotFoundError:
            raise FileNotFoundError(
                "It seems the model for shuffle %s and trainFraction %s does not exist."
                % (shuffle, trainFraction))

        # change batch size, if it was edited during analysis!
        dlc_cfg["batch_size"] = 1  # in case this was edited for analysis.

        # Create folder structure to store results.
        evaluationfolder = os.path.join(
            cfg["project_path"],
            str(
                auxiliaryfunctions.get_evaluation_folder(
                    trainFraction, shuffle, cfg, modelprefix=modelprefix)),
        )
        auxiliaryfunctions.attempttomakefolder(evaluationfolder,
                                               recursive=True)
        # path_train_config = modelfolder / 'train' / 'pose_cfg.yaml'

        # Check which snapshots are available and sort them by # iterations
        Snapshots = np.array([
            fn.split(".")[0]
            for fn in os.listdir(os.path.join(str(modelfolder), "train"))
            if "index" in fn
        ])
        try:  # check if any where found?
            Snapshots[0]
        except IndexError:
            raise FileNotFoundError(
                "Snapshots not found! It seems the dataset for shuffle %s and trainFraction %s is not trained.\nPlease train it before evaluating.\nUse the function 'train_network' to do so."
                % (shuffle, trainFraction))

        increasing_indices = np.argsort(
            [int(m.split("-")[1]) for m in Snapshots])
        Snapshots = Snapshots[increasing_indices]

        if cfg["snapshotindex"] == -1:
            snapindices = [-1]
        elif cfg["snapshotindex"] == "all":
            snapindices = range(len(Snapshots))
        elif cfg["snapshotindex"] < len(Snapshots):
            snapindices = [cfg["snapshotindex"]]
        else:
            print(
                "Invalid choice, only -1 (last), any integer up to last, or all (as string)!"
            )

        ########################### RESCALING (to global scale)
        scale = dlc_cfg["global_scale"] if rescale else 1
        Data *= scale

        bptnames = [
            dlc_cfg["all_joints_names"][i]
            for i in range(len(dlc_cfg["all_joints"]))
        ]

        for snapindex in snapindices:
            dlc_cfg["init_weights"] = os.path.join(
                str(modelfolder), "train", Snapshots[snapindex]
            )  # setting weights to corresponding snapshot.
            trainingsiterations = (
                dlc_cfg["init_weights"].split(os.sep)[-1]
            ).split("-")[
                -1]  # read how many training siterations that corresponds to.

            # Name for deeplabcut net (based on its parameters)
            # DLCscorer,DLCscorerlegacy = auxiliaryfunctions.GetScorerName(cfg,shuffle,trainFraction,trainingsiterations)
            # notanalyzed, resultsfilename, DLCscorer=auxiliaryfunctions.CheckifNotEvaluated(str(evaluationfolder),DLCscorer,DLCscorerlegacy,Snapshots[snapindex])
            # print("Extracting maps for ", DLCscorer, " with # of trainingiterations:", trainingsiterations)
            # if notanalyzed: #this only applies to ask if h5 exists...

            # Specifying state of model (snapshot / training state)
            sess, inputs, outputs = predict.setup_pose_prediction(dlc_cfg)
            Numimages = len(Data.index)
            PredicteData = np.zeros(
                (Numimages, 3 * len(dlc_cfg["all_joints_names"])))
            print("Analyzing data...")
            if Indices is None:
                Indices = enumerate(Data.index)
            else:
                Ind = [Data.index[j] for j in Indices]
                Indices = enumerate(Ind)

            DATA = {}
            for imageindex, imagename in tqdm(Indices):
                image = imread(os.path.join(cfg["project_path"], *imagename),
                               mode="skimage")

                if scale != 1:
                    image = imresize(image, scale)

                image_batch = data_to_input(image)

                # Compute prediction with the CNN
                outputs_np = sess.run(outputs, feed_dict={inputs: image_batch})

                if cfg.get("multianimalproject", False):
                    scmap, locref, paf = predictma.extract_cnn_output(
                        outputs_np, dlc_cfg)
                    pagraph = dlc_cfg["partaffinityfield_graph"]
                else:
                    scmap, locref = predict.extract_cnn_output(
                        outputs_np, dlc_cfg)
                    paf = None
                    pagraph = []
                peaks = outputs_np[-1]

                if imageindex in testIndices:
                    trainingfram = False
                else:
                    trainingfram = True

                DATA[imageindex] = [
                    image,
                    scmap,
                    locref,
                    paf,
                    peaks,
                    bptnames,
                    pagraph,
                    imagename,
                    trainingfram,
                ]
            Maps[trainFraction][Snapshots[snapindex]] = DATA
    os.chdir(str(start_path))
    return Maps
Exemplo n.º 4
0
def extract_save_all_maps(
    config,
    shuffle=1,
    trainingsetindex=0,
    comparisonbodyparts="all",
    extract_paf=True,
    all_paf_in_one=True,
    gputouse=None,
    rescale=False,
    Indices=None,
    modelprefix="",
    dest_folder=None,
):
    """
    Extracts the scoremap, location refinement field and part affinity field prediction of the model. The maps
    will be rescaled to the size of the input image and stored in the corresponding model folder in /evaluation-results.

    ----------
    config : string
        Full path of the config.yaml file as a string.

    shuffle: integer
        integers specifying shuffle index of the training dataset. The default is 1.

    trainingsetindex: int, optional
        Integer specifying which TrainingsetFraction to use. By default the first (note that TrainingFraction is a list in config.yaml). This
        variable can also be set to "all".

    comparisonbodyparts: list of bodyparts, Default is "all".
        The average error will be computed for those body parts only (Has to be a subset of the body parts).

    extract_paf : bool
        Extract part affinity fields by default.
        Note that turning it off will make the function much faster.

    all_paf_in_one : bool
        By default, all part affinity fields are displayed on a single frame.
        If false, individual fields are shown on separate frames.

    Indices: default None
        For which images shall the scmap/locref and paf be computed? Give a list of images

    nplots_per_row: int, optional (default=None)
        Number of plots per row in grid plots. By default, calculated to approximate a squared grid of plots

    Examples
    --------
    Calculated maps for images 0, 1 and 33.
    >>> deeplabcut.extract_save_all_maps('/analysis/project/reaching-task/config.yaml', shuffle=1,Indices=[0,1,33])

    """

    from deeplabcut.utils.auxiliaryfunctions import (
        read_config,
        attempttomakefolder,
        get_evaluation_folder,
        IntersectionofBodyPartsandOnesGivenbyUser,
    )
    from tqdm import tqdm

    cfg = read_config(config)
    data = extract_maps(config, shuffle, trainingsetindex, gputouse, rescale,
                        Indices, modelprefix)

    comparisonbodyparts = IntersectionofBodyPartsandOnesGivenbyUser(
        cfg, comparisonbodyparts)

    print("Saving plots...")
    for frac, values in data.items():
        if not dest_folder:
            dest_folder = os.path.join(
                cfg["project_path"],
                str(
                    get_evaluation_folder(frac,
                                          shuffle,
                                          cfg,
                                          modelprefix=modelprefix)),
                "maps",
            )
        attempttomakefolder(dest_folder)
        filepath = "{imname}_{map}_{label}_{shuffle}_{frac}_{snap}.png"
        dest_path = os.path.join(dest_folder, filepath)
        for snap, maps in values.items():
            for imagenr in tqdm(maps):
                (
                    image,
                    scmap,
                    locref,
                    paf,
                    peaks,
                    bptnames,
                    pafgraph,
                    impath,
                    trainingframe,
                ) = maps[imagenr]
                if not extract_paf:
                    paf = None
                label = "train" if trainingframe else "test"
                imname = impath[-1]
                scmap, (locref_x, locref_y), paf = resize_all_maps(
                    image, scmap, locref, paf)
                to_plot = [
                    i for i, bpt in enumerate(bptnames)
                    if bpt in comparisonbodyparts
                ]
                list_of_inds = []
                for n, edge in enumerate(pafgraph):
                    if any(ind in to_plot for ind in edge):
                        list_of_inds.append([(2 * n, 2 * n + 1),
                                             (bptnames[edge[0]],
                                              bptnames[edge[1]])])
                if len(to_plot) > 1:
                    map_ = scmap[:, :, to_plot].sum(axis=2)
                    locref_x_ = locref_x[:, :, to_plot].sum(axis=2)
                    locref_y_ = locref_y[:, :, to_plot].sum(axis=2)
                elif len(to_plot) == 1 and len(bptnames) > 1:
                    map_ = scmap[:, :, to_plot]
                    locref_x_ = locref_x[:, :, to_plot]
                    locref_y_ = locref_y[:, :, to_plot]
                else:
                    map_ = scmap[..., 0]
                    locref_x_ = locref_x[..., 0]
                    locref_y_ = locref_y[..., 0]
                fig1, _ = visualize_scoremaps(image, map_)
                temp = dest_path.format(
                    imname=imname,
                    map="scmap",
                    label=label,
                    shuffle=shuffle,
                    frac=frac,
                    snap=snap,
                )
                fig1.savefig(temp)

                fig2, _ = visualize_locrefs(image, map_, locref_x_, locref_y_)
                temp = dest_path.format(
                    imname=imname,
                    map="locref",
                    label=label,
                    shuffle=shuffle,
                    frac=frac,
                    snap=snap,
                )
                fig2.savefig(temp)

                if paf is not None:
                    if not all_paf_in_one:
                        for inds, names in list_of_inds:
                            fig3, _ = visualize_paf(image, paf[:, :, [inds]])
                            temp = dest_path.format(
                                imname=imname,
                                map=f'paf_{"_".join(names)}',
                                label=label,
                                shuffle=shuffle,
                                frac=frac,
                                snap=snap,
                            )
                            fig3.savefig(temp)
                    else:
                        inds = [elem[0] for elem in list_of_inds]
                        n_inds = len(inds)
                        cmap = plt.cm.get_cmap(cfg["colormap"], n_inds)
                        colors = cmap(range(n_inds))
                        fig3, _ = visualize_paf(image,
                                                paf[:, :, inds],
                                                colors=colors)
                        temp = dest_path.format(
                            imname=imname,
                            map=f"paf",
                            label=label,
                            shuffle=shuffle,
                            frac=frac,
                            snap=snap,
                        )
                        fig3.savefig(temp)
                plt.close("all")
Exemplo n.º 5
0
def evaluate_multianimal_full(
    config,
    Shuffles=[1],
    trainingsetindex=0,
    plotting=False,
    show_errors=True,
    comparisonbodyparts="all",
    gputouse=None,
    modelprefix="",
):
    from deeplabcut.pose_estimation_tensorflow.core import (
        predict,
        predict_multianimal as predictma,
    )
    from deeplabcut.utils import (
        auxiliaryfunctions,
        auxfun_multianimal,
        auxfun_videos,
        conversioncode,
    )

    import tensorflow as tf

    if "TF_CUDNN_USE_AUTOTUNE" in os.environ:
        del os.environ[
            "TF_CUDNN_USE_AUTOTUNE"]  # was potentially set during training

    tf.compat.v1.reset_default_graph()
    os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"  #
    if gputouse is not None:  # gpu selectinon
        os.environ["CUDA_VISIBLE_DEVICES"] = str(gputouse)

    start_path = os.getcwd()

    if plotting is True:
        plotting = "bodypart"

    ##################################################
    # Load data...
    ##################################################
    cfg = auxiliaryfunctions.read_config(config)
    if trainingsetindex == "all":
        TrainingFractions = cfg["TrainingFraction"]
    else:
        TrainingFractions = [cfg["TrainingFraction"][trainingsetindex]]

    # Loading human annotatated data
    trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder(cfg)
    Data = pd.read_hdf(
        os.path.join(
            cfg["project_path"],
            str(trainingsetfolder),
            "CollectedData_" + cfg["scorer"] + ".h5",
        ))
    conversioncode.guarantee_multiindex_rows(Data)

    # Get list of body parts to evaluate network for
    comparisonbodyparts = auxiliaryfunctions.IntersectionofBodyPartsandOnesGivenbyUser(
        cfg, comparisonbodyparts)
    all_bpts = np.asarray(
        len(cfg["individuals"]) * cfg["multianimalbodyparts"] +
        cfg["uniquebodyparts"])
    colors = visualization.get_cmap(len(comparisonbodyparts),
                                    name=cfg["colormap"])
    # Make folder for evaluation
    auxiliaryfunctions.attempttomakefolder(
        str(cfg["project_path"] + "/evaluation-results/"))
    for shuffle in Shuffles:
        for trainFraction in TrainingFractions:
            ##################################################
            # Load and setup CNN part detector
            ##################################################
            datafn, metadatafn = auxiliaryfunctions.GetDataandMetaDataFilenames(
                trainingsetfolder, trainFraction, shuffle, cfg)
            modelfolder = os.path.join(
                cfg["project_path"],
                str(
                    auxiliaryfunctions.get_model_folder(
                        trainFraction, shuffle, cfg, modelprefix=modelprefix)),
            )
            path_test_config = Path(modelfolder) / "test" / "pose_cfg.yaml"

            # Load meta data
            (
                data,
                trainIndices,
                testIndices,
                trainFraction,
            ) = auxiliaryfunctions.LoadMetadata(
                os.path.join(cfg["project_path"], metadatafn))

            try:
                dlc_cfg = load_config(str(path_test_config))
            except FileNotFoundError:
                raise FileNotFoundError(
                    "It seems the model for shuffle %s and trainFraction %s does not exist."
                    % (shuffle, trainFraction))

            pipeline = iaa.Sequential(random_order=False)
            pre_resize = dlc_cfg.get("pre_resize")
            if pre_resize:
                width, height = pre_resize
                pipeline.add(iaa.Resize({"height": height, "width": width}))

            # TODO: IMPLEMENT for different batch sizes?
            dlc_cfg["batch_size"] = 1  # due to differently sized images!!!

            stride = dlc_cfg["stride"]
            # Ignore best edges possibly defined during a prior evaluation
            _ = dlc_cfg.pop("paf_best", None)
            joints = dlc_cfg["all_joints_names"]

            # Create folder structure to store results.
            evaluationfolder = os.path.join(
                cfg["project_path"],
                str(
                    auxiliaryfunctions.get_evaluation_folder(
                        trainFraction, shuffle, cfg, modelprefix=modelprefix)),
            )
            auxiliaryfunctions.attempttomakefolder(evaluationfolder,
                                                   recursive=True)
            # path_train_config = modelfolder / 'train' / 'pose_cfg.yaml'

            # Check which snapshots are available and sort them by # iterations
            Snapshots = np.array([
                fn.split(".")[0]
                for fn in os.listdir(os.path.join(str(modelfolder), "train"))
                if "index" in fn
            ])
            if len(Snapshots) == 0:
                print(
                    "Snapshots not found! It seems the dataset for shuffle %s and trainFraction %s is not trained.\nPlease train it before evaluating.\nUse the function 'train_network' to do so."
                    % (shuffle, trainFraction))
            else:
                increasing_indices = np.argsort(
                    [int(m.split("-")[1]) for m in Snapshots])
                Snapshots = Snapshots[increasing_indices]

                if cfg["snapshotindex"] == -1:
                    snapindices = [-1]
                elif cfg["snapshotindex"] == "all":
                    snapindices = range(len(Snapshots))
                elif cfg["snapshotindex"] < len(Snapshots):
                    snapindices = [cfg["snapshotindex"]]
                else:
                    print(
                        "Invalid choice, only -1 (last), any integer up to last, or all (as string)!"
                    )

                final_result = []
                ##################################################
                # Compute predictions over images
                ##################################################
                for snapindex in snapindices:
                    dlc_cfg["init_weights"] = os.path.join(
                        str(modelfolder), "train", Snapshots[snapindex]
                    )  # setting weights to corresponding snapshot.
                    trainingsiterations = (
                        dlc_cfg["init_weights"].split(os.sep)[-1]
                    ).split(
                        "-"
                    )[-1]  # read how many training siterations that corresponds to.

                    # name for deeplabcut net (based on its parameters)
                    DLCscorer, DLCscorerlegacy = auxiliaryfunctions.GetScorerName(
                        cfg,
                        shuffle,
                        trainFraction,
                        trainingsiterations,
                        modelprefix=modelprefix,
                    )
                    print(
                        "Running ",
                        DLCscorer,
                        " with # of trainingiterations:",
                        trainingsiterations,
                    )
                    (
                        notanalyzed,
                        resultsfilename,
                        DLCscorer,
                    ) = auxiliaryfunctions.CheckifNotEvaluated(
                        str(evaluationfolder),
                        DLCscorer,
                        DLCscorerlegacy,
                        Snapshots[snapindex],
                    )

                    data_path = resultsfilename.split(
                        ".h5")[0] + "_full.pickle"

                    if plotting:
                        foldername = os.path.join(
                            str(evaluationfolder),
                            "LabeledImages_" + DLCscorer + "_" +
                            Snapshots[snapindex],
                        )
                        auxiliaryfunctions.attempttomakefolder(foldername)
                        if plotting == "bodypart":
                            fig, ax = visualization.create_minimal_figure()

                    if os.path.isfile(data_path):
                        print("Model already evaluated.", resultsfilename)
                    else:

                        (
                            sess,
                            inputs,
                            outputs,
                        ) = predict.setup_pose_prediction(dlc_cfg)

                        PredicteData = {}
                        dist = np.full((len(Data), len(all_bpts)), np.nan)
                        conf = np.full_like(dist, np.nan)
                        print("Network Evaluation underway...")
                        for imageindex, imagename in tqdm(enumerate(
                                Data.index)):
                            image_path = os.path.join(cfg["project_path"],
                                                      *imagename)
                            frame = auxfun_videos.imread(image_path,
                                                         mode="skimage")

                            GT = Data.iloc[imageindex]
                            if not GT.any():
                                continue

                            # Pass the image and the keypoints through the resizer;
                            # this has no effect if no augmenters were added to it.
                            keypoints = [
                                GT.to_numpy().reshape((-1, 2)).astype(float)
                            ]
                            frame_, keypoints = pipeline(images=[frame],
                                                         keypoints=keypoints)
                            frame = frame_[0]
                            GT[:] = keypoints[0].flatten()

                            df = GT.unstack("coords").reindex(
                                joints, level="bodyparts")

                            # FIXME Is having an empty array vs nan really that necessary?!
                            groundtruthidentity = list(
                                df.index.get_level_values(
                                    "individuals").to_numpy().reshape((-1, 1)))
                            groundtruthcoordinates = list(
                                df.values[:, np.newaxis])
                            for i, coords in enumerate(groundtruthcoordinates):
                                if np.isnan(coords).any():
                                    groundtruthcoordinates[i] = np.empty(
                                        (0, 2), dtype=float)
                                    groundtruthidentity[i] = np.array(
                                        [], dtype=str)

                            # Form 2D array of shape (n_rows, 4) where the last dimension
                            # is (sample_index, peak_y, peak_x, bpt_index) to slice the PAFs.
                            temp = df.reset_index(level="bodyparts").dropna()
                            temp["bodyparts"].replace(
                                dict(zip(joints, range(len(joints)))),
                                inplace=True,
                            )
                            temp["sample"] = 0
                            peaks_gt = temp.loc[:, [
                                "sample", "y", "x", "bodyparts"
                            ]].to_numpy()
                            peaks_gt[:, 1:3] = (peaks_gt[:, 1:3] -
                                                stride // 2) / stride

                            pred = predictma.predict_batched_peaks_and_costs(
                                dlc_cfg,
                                np.expand_dims(frame, axis=0),
                                sess,
                                inputs,
                                outputs,
                                peaks_gt.astype(int),
                            )

                            if not pred:
                                continue
                            else:
                                pred = pred[0]

                            PredicteData[imagename] = {}
                            PredicteData[imagename]["index"] = imageindex
                            PredicteData[imagename]["prediction"] = pred
                            PredicteData[imagename]["groundtruth"] = [
                                groundtruthidentity,
                                groundtruthcoordinates,
                                GT,
                            ]

                            coords_pred = pred["coordinates"][0]
                            probs_pred = pred["confidence"]
                            for bpt, xy_gt in df.groupby(level="bodyparts"):
                                inds_gt = np.flatnonzero(
                                    np.all(~np.isnan(xy_gt), axis=1))
                                n_joint = joints.index(bpt)
                                xy = coords_pred[n_joint]
                                if inds_gt.size and xy.size:
                                    # Pick the predictions closest to ground truth,
                                    # rather than the ones the model has most confident in
                                    xy_gt_values = xy_gt.iloc[inds_gt].values
                                    neighbors = _find_closest_neighbors(
                                        xy_gt_values, xy, k=3)
                                    found = neighbors != -1
                                    min_dists = np.linalg.norm(
                                        xy_gt_values[found] -
                                        xy[neighbors[found]],
                                        axis=1,
                                    )
                                    inds = np.flatnonzero(all_bpts == bpt)
                                    sl = imageindex, inds[inds_gt[found]]
                                    dist[sl] = min_dists
                                    conf[sl] = probs_pred[n_joint][
                                        neighbors[found]].squeeze()

                            if plotting == "bodypart":
                                temp_xy = GT.unstack(
                                    "bodyparts")[joints].values
                                gt = temp_xy.reshape(
                                    (-1, 2,
                                     temp_xy.shape[1])).T.swapaxes(1, 2)
                                h, w, _ = np.shape(frame)
                                fig.set_size_inches(w / 100, h / 100)
                                ax.set_xlim(0, w)
                                ax.set_ylim(0, h)
                                ax.invert_yaxis()
                                ax = visualization.make_multianimal_labeled_image(
                                    frame,
                                    gt,
                                    coords_pred,
                                    probs_pred,
                                    colors,
                                    cfg["dotsize"],
                                    cfg["alphavalue"],
                                    cfg["pcutoff"],
                                    ax=ax,
                                )
                                visualization.save_labeled_frame(
                                    fig,
                                    image_path,
                                    foldername,
                                    imageindex in trainIndices,
                                )
                                visualization.erase_artists(ax)

                        sess.close()  # closes the current tf session

                        # Compute all distance statistics
                        df_dist = pd.DataFrame(dist, columns=df.index)
                        df_conf = pd.DataFrame(conf, columns=df.index)
                        df_joint = pd.concat(
                            [df_dist, df_conf],
                            keys=["rmse", "conf"],
                            names=["metrics"],
                            axis=1,
                        )
                        df_joint = df_joint.reorder_levels(list(
                            np.roll(df_joint.columns.names, -1)),
                                                           axis=1)
                        df_joint.sort_index(
                            axis=1,
                            level=["individuals", "bodyparts"],
                            ascending=[True, True],
                            inplace=True,
                        )
                        write_path = os.path.join(
                            evaluationfolder,
                            f"dist_{trainingsiterations}.csv")
                        df_joint.to_csv(write_path)

                        # Calculate overall prediction error
                        error = df_joint.xs("rmse", level="metrics", axis=1)
                        mask = (df_joint.xs("conf", level="metrics", axis=1) >=
                                cfg["pcutoff"])
                        error_masked = error[mask]
                        error_train = np.nanmean(error.iloc[trainIndices])
                        error_train_cut = np.nanmean(
                            error_masked.iloc[trainIndices])
                        error_test = np.nanmean(error.iloc[testIndices])
                        error_test_cut = np.nanmean(
                            error_masked.iloc[testIndices])
                        results = [
                            trainingsiterations,
                            int(100 * trainFraction),
                            shuffle,
                            np.round(error_train, 2),
                            np.round(error_test, 2),
                            cfg["pcutoff"],
                            np.round(error_train_cut, 2),
                            np.round(error_test_cut, 2),
                        ]
                        final_result.append(results)

                        if show_errors:
                            string = (
                                "Results for {} training iterations, training fraction of {}, and shuffle {}:\n"
                                "Train error: {} pixels. Test error: {} pixels.\n"
                                "With pcutoff of {}:\n"
                                "Train error: {} pixels. Test error: {} pixels."
                            )
                            print(string.format(*results))

                            print("##########################################")
                            print(
                                "Average Euclidean distance to GT per individual (in pixels; test-only)"
                            )
                            print(error_masked.iloc[testIndices].groupby(
                                "individuals",
                                axis=1).mean().mean().to_string())
                            print(
                                "Average Euclidean distance to GT per bodypart (in pixels; test-only)"
                            )
                            print(error_masked.iloc[testIndices].groupby(
                                "bodyparts", axis=1).mean().mean().to_string())

                        PredicteData["metadata"] = {
                            "nms radius":
                            dlc_cfg["nmsradius"],
                            "minimal confidence":
                            dlc_cfg["minconfidence"],
                            "sigma":
                            dlc_cfg.get("sigma", 1),
                            "PAFgraph":
                            dlc_cfg["partaffinityfield_graph"],
                            "PAFinds":
                            np.arange(len(dlc_cfg["partaffinityfield_graph"])),
                            "all_joints":
                            [[i] for i in range(len(dlc_cfg["all_joints"]))],
                            "all_joints_names": [
                                dlc_cfg["all_joints_names"][i]
                                for i in range(len(dlc_cfg["all_joints"]))
                            ],
                            "stride":
                            dlc_cfg.get("stride", 8),
                        }
                        print(
                            "Done and results stored for snapshot: ",
                            Snapshots[snapindex],
                        )

                        dictionary = {
                            "Scorer": DLCscorer,
                            "DLC-model-config file": dlc_cfg,
                            "trainIndices": trainIndices,
                            "testIndices": testIndices,
                            "trainFraction": trainFraction,
                        }
                        metadata = {"data": dictionary}
                        _ = auxfun_multianimal.SaveFullMultiAnimalData(
                            PredicteData, metadata, resultsfilename)

                        tf.compat.v1.reset_default_graph()

                    n_multibpts = len(cfg["multianimalbodyparts"])
                    if n_multibpts == 1:
                        continue

                    # Skip data-driven skeleton selection unless
                    # the model was trained on the full graph.
                    max_n_edges = n_multibpts * (n_multibpts - 1) // 2
                    n_edges = len(dlc_cfg["partaffinityfield_graph"])
                    if n_edges == max_n_edges:
                        print("Selecting best skeleton...")
                        n_graphs = 10
                        paf_inds = None
                    else:
                        n_graphs = 1
                        paf_inds = [list(range(n_edges))]
                    (
                        results,
                        paf_scores,
                        best_assemblies,
                    ) = crossvalutils.cross_validate_paf_graphs(
                        config,
                        str(path_test_config).replace("pose_", "inference_"),
                        data_path,
                        data_path.replace("_full.", "_meta."),
                        n_graphs=n_graphs,
                        paf_inds=paf_inds,
                        oks_sigma=dlc_cfg.get("oks_sigma", 0.1),
                        margin=dlc_cfg.get("bbox_margin", 0),
                        symmetric_kpts=dlc_cfg.get("symmetric_kpts"),
                    )
                    if plotting == "individual":
                        assemblies, assemblies_unique, image_paths = best_assemblies
                        fig, ax = visualization.create_minimal_figure()
                        n_animals = len(cfg["individuals"])
                        if cfg["uniquebodyparts"]:
                            n_animals += 1
                        colors = visualization.get_cmap(n_animals,
                                                        name=cfg["colormap"])
                        for k, v in tqdm(assemblies.items()):
                            imname = image_paths[k]
                            image_path = os.path.join(cfg["project_path"],
                                                      *imname)
                            frame = auxfun_videos.imread(image_path,
                                                         mode="skimage")

                            h, w, _ = np.shape(frame)
                            fig.set_size_inches(w / 100, h / 100)
                            ax.set_xlim(0, w)
                            ax.set_ylim(0, h)
                            ax.invert_yaxis()

                            gt = [
                                s.to_numpy().reshape((-1, 2)) for _, s in
                                Data.loc[imname].groupby("individuals")
                            ]
                            coords_pred = []
                            coords_pred += [ass.xy for ass in v]
                            probs_pred = []
                            probs_pred += [ass.data[:, 2:3] for ass in v]
                            if assemblies_unique is not None:
                                unique = assemblies_unique.get(k, None)
                                if unique is not None:
                                    coords_pred.append(unique[:, :2])
                                    probs_pred.append(unique[:, 2:3])
                            while len(coords_pred) < len(gt):
                                coords_pred.append(np.full((1, 2), np.nan))
                                probs_pred.append(np.full((1, 2), np.nan))
                            ax = visualization.make_multianimal_labeled_image(
                                frame,
                                gt,
                                coords_pred,
                                probs_pred,
                                colors,
                                cfg["dotsize"],
                                cfg["alphavalue"],
                                cfg["pcutoff"],
                                ax=ax,
                            )
                            visualization.save_labeled_frame(
                                fig,
                                image_path,
                                foldername,
                                k in trainIndices,
                            )
                            visualization.erase_artists(ax)

                    df = results[1].copy()
                    df.loc(axis=0)[("mAP_train", "mean")] = [
                        d[0]["mAP"] for d in results[2]
                    ]
                    df.loc(axis=0)[("mAR_train", "mean")] = [
                        d[0]["mAR"] for d in results[2]
                    ]
                    df.loc(axis=0)[("mAP_test", "mean")] = [
                        d[1]["mAP"] for d in results[2]
                    ]
                    df.loc(axis=0)[("mAR_test", "mean")] = [
                        d[1]["mAR"] for d in results[2]
                    ]
                    with open(data_path.replace("_full.", "_map."),
                              "wb") as file:
                        pickle.dump((df, paf_scores), file)

                if len(final_result
                       ) > 0:  # Only append if results were calculated
                    make_results_file(final_result, evaluationfolder,
                                      DLCscorer)

    os.chdir(str(start_path))