コード例 #1
0
def get_child_message(x, y, hidden={}, visible={}):
    with graph_context({**hidden, **visible}):
        data = context(y)
        log_likelihood = y.log_likelihood(data)
    stats = x.statistics()
    param = T.grad(T.sum(log_likelihood), [x.get_statistic(s) for s in stats])
    return {s: param[i] for i, s in enumerate(stats)}
コード例 #2
0
 def expected_sufficient_statistics(self):
     if self._estats is None:
         natparam = self.get_parameters('natural', stop_gradient=True)
         stats = list(self.statistics())
         log_z = self.log_z('natural', stop_gradient=True)
         grads = T.grad(log_z, [natparam[s] for s in stats])
         self._estats = {s: g for s, g in zip(stats, grads)}
     return self._estats
コード例 #3
0
ファイル: conditional.py プロジェクト: sharadmv/nvmp
def get_child_message(x, y, data={}):
    y_ = data[y]
    stats = x.statistics()
    log_likelihood = y.log_likelihood(y_)
    param = T.grad(T.sum(log_likelihood), [x.get_statistic(s) for s in stats])
    return {s: param[i] for i, s in enumerate(stats)}
コード例 #4
0
ファイル: lds.py プロジェクト: yuchen8807/parasol
 def kl_gradients(self, q_X, q_A, kl, num_data):
     return T.grad(kl, self.get_parameters())