コード例 #1
0
ファイル: nnds.py プロジェクト: yuchen8807/parasol
 def kl_divergence(self, q_X, q_A, _):
     # q_Xt - [N, H, ds]
     # q_At - [N, H, da]
     if (q_X, q_A) not in self.cache:
         q_Xt = q_X.__class__([
             q_X.get_parameters('regular')[0][:, :-1],
             q_X.get_parameters('regular')[1][:, :-1],
         ])
         q_At = q_A.__class__([
             q_A.get_parameters('regular')[0][:, :-1],
             q_A.get_parameters('regular')[1][:, :-1],
         ])
         p_Xt1 = self.forward(q_Xt, q_At)
         q_Xt1 = q_X.__class__([
             q_X.get_parameters('regular')[0][:, 1:],
             q_X.get_parameters('regular')[1][:, 1:],
         ])
         rmse = T.sqrt(
             T.sum(T.square(
                 q_Xt1.get_parameters('regular')[1] -
                 p_Xt1.get_parameters('regular')[1]),
                   axis=-1))
         model_stdev = T.sqrt(p_Xt1.get_parameters('regular')[0])
         encoding_stdev = T.sqrt(q_Xt1.get_parameters('regular')[0])
         self.cache[(q_X, q_A)] = T.sum(stats.kl_divergence(q_Xt1, p_Xt1),
                                        axis=-1), {
                                            'rmse': rmse,
                                            'encoding-stdev':
                                            encoding_stdev,
                                            'model-stdev': model_stdev
                                        }
     return self.cache[(q_X, q_A)]
コード例 #2
0
ファイル: lds.py プロジェクト: yuchen8807/parasol
 def kl_divergence(self, q_X, q_A, _):
     # q_Xt - [N, H, ds]
     # q_At - [N, H, da]
     if (q_X, q_A) not in self.cache:
         info = {}
         if self.smooth:
             state_prior = stats.GaussianScaleDiag([
                 T.ones(self.ds),
                 T.zeros(self.ds)
             ])
             p_X = stats.LDS(
                 (self.sufficient_statistics(), state_prior, None, q_A.expected_value(), self.horizon),
             'internal')
             kl = T.mean(stats.kl_divergence(q_X, p_X), axis=0)
             Q = self.get_dynamics()[1]
             info['model-stdev'] = T.sqrt(T.matrix_diag_part(Q))
         else:
             q_Xt = q_X.__class__([
                 q_X.get_parameters('regular')[0][:, :-1],
                 q_X.get_parameters('regular')[1][:, :-1],
             ])
             q_At = q_A.__class__([
                 q_A.get_parameters('regular')[0][:, :-1],
                 q_A.get_parameters('regular')[1][:, :-1],
             ])
             p_Xt1 = self.forward(q_Xt, q_At)
             q_Xt1 = q_X.__class__([
                 q_X.get_parameters('regular')[0][:, 1:],
                 q_X.get_parameters('regular')[1][:, 1:],
             ])
             rmse = T.sqrt(T.sum(T.square(q_Xt1.get_parameters('regular')[1] - p_Xt1.get_parameters('regular')[1]), axis=-1))
             kl = T.mean(T.sum(stats.kl_divergence(q_Xt1, p_Xt1), axis=-1), axis=0)
             Q = self.get_dynamics()[1]
             model_stdev = T.sqrt(T.matrix_diag_part(Q))
             info['rmse'] = rmse
             info['model-stdev'] = model_stdev
         self.cache[(q_X, q_A)] = kl, info
     return self.cache[(q_X, q_A)]
コード例 #3
0
ファイル: blds.py プロジェクト: yuchen8807/parasol
 def kl_divergence(self, q_X, q_A, num_data):
     if (q_X, q_A) not in self.cache:
         if self.smooth:
             state_prior = stats.GaussianScaleDiag(
                 [T.ones(self.ds), T.zeros(self.ds)])
             self.p_X = stats.LDS(
                 (self.sufficient_statistics(), state_prior, None,
                  q_A.expected_value(), self.horizon), 'internal')
             local_kl = stats.kl_divergence(q_X, self.p_X)
             if self.time_varying:
                 global_kl = T.sum(
                     stats.kl_divergence(self.A_variational, self.A_prior))
             else:
                 global_kl = stats.kl_divergence(self.A_variational,
                                                 self.A_prior)
             prior_kl = T.mean(local_kl,
                               axis=0) + global_kl / T.to_float(num_data)
             A, Q = self.get_dynamics()
             model_stdev = T.sqrt(T.matrix_diag_part(Q))
             self.cache[(q_X, q_A)] = prior_kl, {
                 'local-kl': local_kl,
                 'global-kl': global_kl,
                 'model-stdev': model_stdev,
             }
         else:
             q_Xt = q_X.__class__([
                 q_X.get_parameters('regular')[0][:, :-1],
                 q_X.get_parameters('regular')[1][:, :-1],
             ])
             q_At = q_A.__class__([
                 q_A.get_parameters('regular')[0][:, :-1],
                 q_A.get_parameters('regular')[1][:, :-1],
             ])
             p_Xt1 = self.forward(q_Xt, q_At)
             q_Xt1 = q_X.__class__([
                 q_X.get_parameters('regular')[0][:, 1:],
                 q_X.get_parameters('regular')[1][:, 1:],
             ])
             num_data = T.to_float(num_data)
             rmse = T.sqrt(
                 T.sum(T.square(
                     q_Xt1.get_parameters('regular')[1] -
                     p_Xt1.get_parameters('regular')[1]),
                       axis=-1))
             A, Q = self.get_dynamics()
             model_stdev = T.sqrt(T.matrix_diag_part(Q))
             local_kl = T.sum(stats.kl_divergence(q_Xt1, p_Xt1), axis=1)
             if self.time_varying:
                 global_kl = T.sum(
                     stats.kl_divergence(self.A_variational, self.A_prior))
             else:
                 global_kl = stats.kl_divergence(self.A_variational,
                                                 self.A_prior)
             self.cache[(q_X, q_A)] = (T.mean(local_kl, axis=0) +
                                       global_kl / T.to_float(num_data), {
                                           'rmse': rmse,
                                           'model-stdev': model_stdev,
                                           'local-kl': local_kl,
                                           'global-kl': global_kl
                                       })
     return self.cache[(q_X, q_A)]
コード例 #4
0
ファイル: vae.py プロジェクト: sharadmv/deep-trees
 def log_likelihood(self, batch_z, batch):
     x = Vector(self.input_size, placeholder=batch, is_input=False)
     mu, sigma = (x >> self.q_network).get_graph_outputs()
     sigma = T.sqrt(T.exp(sigma))
     return T.mean(
         log_normal(batch_z, mu, sigma, self.embedding_size, dim=2))
コード例 #5
0
ファイル: vae.py プロジェクト: sharadmv/deep-trees
 def sample_z(self, batch, batch_noise, feed_dict={}):
     x = Vector(self.input_size, placeholder=batch, is_input=False)
     mu, sigma = (x >> self.q_network).get_graph_outputs()
     sigma = T.sqrt(T.exp(sigma))
     return mu + sigma * batch_noise