def try_meijerg(function, xab): ret = None if len(xab) == 3 and meijerg is not False: x, a, b = xab try: res = meijerint_definite(function, x, a, b) except NotImplementedError: from diofant.integrals.meijerint import _debug _debug('NotImplementedError from meijerint_definite') res = None if res is not None: f, cond = res if conds == 'piecewise': ret = Piecewise((f, cond), (self.func(function, (x, a, b)), True)) elif conds == 'separate': if len(self.limits) != 1: raise ValueError( 'conds=separate not supported in ' 'multiple integrals') ret = f, cond else: ret = f return ret
def test_meijerint_definite(): v, b = meijerint_definite(x, x, 0, 0) assert v.is_zero and b is True v, b = meijerint_definite(x, x, oo, oo) assert v.is_zero and b is True
def test_meijerint(): s, t, mu = symbols('s t mu', extended_real=True) assert integrate( meijerg([], [], [0], [], s * t) * meijerg([], [], [mu / 2], [-mu / 2], t**2 / 4), (t, 0, oo)).is_Piecewise s = symbols('s', positive=True) assert integrate(x**s*meijerg([[], []], [[0], []], x), (x, 0, oo)) == \ gamma(s + 1) assert integrate(x**s * meijerg([[], []], [[0], []], x), (x, 0, oo), meijerg=True) == gamma(s + 1) assert isinstance( integrate(x**s * meijerg([[], []], [[0], []], x), (x, 0, oo), meijerg=False), Integral) assert meijerint_indefinite(exp(x), x) == exp(x) # TODO what simplifications should be done automatically? # This tests "extra case" for antecedents_1. a, b = symbols('a b', positive=True) assert simplify(meijerint_definite(x**a, x, 0, b)[0]) == \ b**(a + 1)/(a + 1) # This tests various conditions and expansions: meijerint_definite((x + 1)**3 * exp(-x), x, 0, oo) == (16, True) # Again, how about simplifications? sigma, mu = symbols('sigma mu', positive=True) i, c = meijerint_definite(exp(-((x - mu) / (2 * sigma))**2), x, 0, oo) assert simplify(i) == sqrt(pi) * sigma * (erf(mu / (2 * sigma)) + 1) assert c i, _ = meijerint_definite(exp(-mu * x) * exp(sigma * x), x, 0, oo) # TODO it would be nice to test the condition assert simplify(i) == 1 / (mu - sigma) # Test substitutions to change limits assert meijerint_definite(exp(x), x, -oo, 2) == (exp(2), True) # Note: causes a NaN in _check_antecedents assert expand(meijerint_definite(exp(x), x, 0, I)[0]) == exp(I) - 1 assert expand(meijerint_definite(exp(-x), x, 0, x)[0]) == \ 1 - exp(-exp(I*arg(x))*abs(x)) # Test -oo to oo assert meijerint_definite(exp(-x**2), x, -oo, oo) == (sqrt(pi), True) assert meijerint_definite(exp(-abs(x)), x, -oo, oo) == (2, True) assert meijerint_definite(exp(-(2*x - 3)**2), x, -oo, oo) == \ (sqrt(pi)/2, True) assert meijerint_definite(exp(-abs(2 * x - 3)), x, -oo, oo) == (1, True) assert meijerint_definite( exp(-((x - mu) / sigma)**2 / 2) / sqrt(2 * pi * sigma**2), x, -oo, oo) == (1, True) # Test one of the extra conditions for 2 g-functinos assert meijerint_definite(exp(-x) * sin(x), x, 0, oo) == (Rational(1, 2), True) # Test a bug def res(n): return (1 / (1 + x**2)).diff(x, n).subs({x: 1}) * (-1)**n for n in range(6): assert integrate(exp(-x)*sin(x)*x**n, (x, 0, oo), meijerg=True) == \ res(n) # This used to test trigexpand... now it is done by linear substitution assert simplify(integrate(exp(-x) * sin(x + a), (x, 0, oo), meijerg=True)) == sqrt(2) * sin(a + pi / 4) / 2 # Test the condition 14 from prudnikov. # (This is besselj*besselj in disguise, to stop the product from being # recognised in the tables.) a, b, s = symbols('a b s') assert meijerint_definite(meijerg([], [], [a/2], [-a/2], x/4) * meijerg([], [], [b/2], [-b/2], x/4)*x**(s - 1), x, 0, oo) == \ (4*2**(2*s - 2)*gamma(-2*s + 1)*gamma(a/2 + b/2 + s) / (gamma(-a/2 + b/2 - s + 1)*gamma(a/2 - b/2 - s + 1) * gamma(a/2 + b/2 - s + 1)), And(0 < -2*re(4*s) + 8, 0 < re(a/2 + b/2 + s), re(2*s) < 1)) # test a bug assert integrate(sin(x**a)*sin(x**b), (x, 0, oo), meijerg=True) == \ Integral(sin(x**a)*sin(x**b), (x, 0, oo)) # test better hyperexpand assert integrate(exp(-x**2)*log(x), (x, 0, oo), meijerg=True) == \ (sqrt(pi)*polygamma(0, Rational(1, 2))/4).expand() # Test hyperexpand bug. n = symbols('n', integer=True) assert simplify(integrate(exp(-x)*x**n, x, meijerg=True)) == \ lowergamma(n + 1, x) # Test a bug with argument 1/x alpha = symbols('alpha', positive=True) assert meijerint_definite((2 - x)**alpha*sin(alpha/x), x, 0, 2) == \ (sqrt(pi)*alpha*gamma(alpha + 1)*meijerg(((), (alpha/2 + Rational(1, 2), alpha/2 + 1)), ((0, 0, Rational(1, 2)), (-Rational(1, 2),)), alpha**2/16)/4, True) # test a bug related to 3016 a, s = symbols('a s', positive=True) assert simplify(integrate(x**s*exp(-a*x**2), (x, -oo, oo))) == \ a**(-s/2 - Rational(1, 2))*((-1)**s + 1)*gamma(s/2 + Rational(1, 2))/2
def test_meijerint(): s, t, mu = symbols('s t mu', extended_real=True) assert integrate(meijerg([], [], [0], [], s*t) * meijerg([], [], [mu/2], [-mu/2], t**2/4), (t, 0, oo)).is_Piecewise s = symbols('s', positive=True) assert integrate(x**s*meijerg([[], []], [[0], []], x), (x, 0, oo)) == \ gamma(s + 1) assert integrate(x**s*meijerg([[], []], [[0], []], x), (x, 0, oo), meijerg=True) == gamma(s + 1) assert isinstance(integrate(x**s*meijerg([[], []], [[0], []], x), (x, 0, oo), meijerg=False), Integral) assert meijerint_indefinite(exp(x), x) == exp(x) # TODO what simplifications should be done automatically? # This tests "extra case" for antecedents_1. a, b = symbols('a b', positive=True) assert simplify(meijerint_definite(x**a, x, 0, b)[0]) == \ b**(a + 1)/(a + 1) # This tests various conditions and expansions: meijerint_definite((x + 1)**3*exp(-x), x, 0, oo) == (16, True) # Again, how about simplifications? sigma, mu = symbols('sigma mu', positive=True) i, c = meijerint_definite(exp(-((x - mu)/(2*sigma))**2), x, 0, oo) assert simplify(i) == sqrt(pi)*sigma*(erf(mu/(2*sigma)) + 1) assert c i, _ = meijerint_definite(exp(-mu*x)*exp(sigma*x), x, 0, oo) # TODO it would be nice to test the condition assert simplify(i) == 1/(mu - sigma) # Test substitutions to change limits assert meijerint_definite(exp(x), x, -oo, 2) == (exp(2), True) # Note: causes a NaN in _check_antecedents assert expand(meijerint_definite(exp(x), x, 0, I)[0]) == exp(I) - 1 assert expand(meijerint_definite(exp(-x), x, 0, x)[0]) == \ 1 - exp(-exp(I*arg(x))*abs(x)) # Test -oo to oo assert meijerint_definite(exp(-x**2), x, -oo, oo) == (sqrt(pi), True) assert meijerint_definite(exp(-abs(x)), x, -oo, oo) == (2, True) assert meijerint_definite(exp(-(2*x - 3)**2), x, -oo, oo) == \ (sqrt(pi)/2, True) assert meijerint_definite(exp(-abs(2*x - 3)), x, -oo, oo) == (1, True) assert meijerint_definite(exp(-((x - mu)/sigma)**2/2)/sqrt(2*pi*sigma**2), x, -oo, oo) == (1, True) # Test one of the extra conditions for 2 g-functinos assert meijerint_definite(exp(-x)*sin(x), x, 0, oo) == (Rational(1, 2), True) # Test a bug def res(n): return (1/(1 + x**2)).diff(x, n).subs({x: 1})*(-1)**n for n in range(6): assert integrate(exp(-x)*sin(x)*x**n, (x, 0, oo), meijerg=True) == \ res(n) # This used to test trigexpand... now it is done by linear substitution assert simplify(integrate(exp(-x)*sin(x + a), (x, 0, oo), meijerg=True) ) == sqrt(2)*sin(a + pi/4)/2 # Test the condition 14 from prudnikov. # (This is besselj*besselj in disguise, to stop the product from being # recognised in the tables.) a, b, s = symbols('a b s') assert meijerint_definite(meijerg([], [], [a/2], [-a/2], x/4) * meijerg([], [], [b/2], [-b/2], x/4)*x**(s - 1), x, 0, oo) == \ (4*2**(2*s - 2)*gamma(-2*s + 1)*gamma(a/2 + b/2 + s) / (gamma(-a/2 + b/2 - s + 1)*gamma(a/2 - b/2 - s + 1) * gamma(a/2 + b/2 - s + 1)), And(0 < -2*re(4*s) + 8, 0 < re(a/2 + b/2 + s), re(2*s) < 1)) # test a bug assert integrate(sin(x**a)*sin(x**b), (x, 0, oo), meijerg=True) == \ Integral(sin(x**a)*sin(x**b), (x, 0, oo)) # test better hyperexpand assert integrate(exp(-x**2)*log(x), (x, 0, oo), meijerg=True) == \ (sqrt(pi)*polygamma(0, Rational(1, 2))/4).expand() # Test hyperexpand bug. n = symbols('n', integer=True) assert simplify(integrate(exp(-x)*x**n, x, meijerg=True)) == \ lowergamma(n + 1, x) # Test a bug with argument 1/x alpha = symbols('alpha', positive=True) assert meijerint_definite((2 - x)**alpha*sin(alpha/x), x, 0, 2) == \ (sqrt(pi)*alpha*gamma(alpha + 1)*meijerg(((), (alpha/2 + Rational(1, 2), alpha/2 + 1)), ((0, 0, Rational(1, 2)), (-Rational(1, 2),)), alpha**2/16)/4, True) # test a bug related to 3016 a, s = symbols('a s', positive=True) assert simplify(integrate(x**s*exp(-a*x**2), (x, -oo, oo))) == \ a**(-s/2 - Rational(1, 2))*((-1)**s + 1)*gamma(s/2 + Rational(1, 2))/2