示例#1
0
 def try_meijerg(function, xab):
     ret = None
     if len(xab) == 3 and meijerg is not False:
         x, a, b = xab
         try:
             res = meijerint_definite(function, x, a, b)
         except NotImplementedError:
             from diofant.integrals.meijerint import _debug
             _debug('NotImplementedError from meijerint_definite')
             res = None
         if res is not None:
             f, cond = res
             if conds == 'piecewise':
                 ret = Piecewise((f, cond),
                                 (self.func(function,
                                            (x, a, b)), True))
             elif conds == 'separate':
                 if len(self.limits) != 1:
                     raise ValueError(
                         'conds=separate not supported in '
                         'multiple integrals')
                 ret = f, cond
             else:
                 ret = f
     return ret
示例#2
0
def test_meijerint_definite():
    v, b = meijerint_definite(x, x, 0, 0)
    assert v.is_zero and b is True
    v, b = meijerint_definite(x, x, oo, oo)
    assert v.is_zero and b is True
示例#3
0
def test_meijerint():
    s, t, mu = symbols('s t mu', extended_real=True)
    assert integrate(
        meijerg([], [], [0], [], s * t) *
        meijerg([], [], [mu / 2], [-mu / 2], t**2 / 4),
        (t, 0, oo)).is_Piecewise
    s = symbols('s', positive=True)
    assert integrate(x**s*meijerg([[], []], [[0], []], x), (x, 0, oo)) == \
        gamma(s + 1)
    assert integrate(x**s * meijerg([[], []], [[0], []], x), (x, 0, oo),
                     meijerg=True) == gamma(s + 1)
    assert isinstance(
        integrate(x**s * meijerg([[], []], [[0], []], x), (x, 0, oo),
                  meijerg=False), Integral)

    assert meijerint_indefinite(exp(x), x) == exp(x)

    # TODO what simplifications should be done automatically?
    # This tests "extra case" for antecedents_1.
    a, b = symbols('a b', positive=True)
    assert simplify(meijerint_definite(x**a, x, 0, b)[0]) == \
        b**(a + 1)/(a + 1)

    # This tests various conditions and expansions:
    meijerint_definite((x + 1)**3 * exp(-x), x, 0, oo) == (16, True)

    # Again, how about simplifications?
    sigma, mu = symbols('sigma mu', positive=True)
    i, c = meijerint_definite(exp(-((x - mu) / (2 * sigma))**2), x, 0, oo)
    assert simplify(i) == sqrt(pi) * sigma * (erf(mu / (2 * sigma)) + 1)
    assert c

    i, _ = meijerint_definite(exp(-mu * x) * exp(sigma * x), x, 0, oo)
    # TODO it would be nice to test the condition
    assert simplify(i) == 1 / (mu - sigma)

    # Test substitutions to change limits
    assert meijerint_definite(exp(x), x, -oo, 2) == (exp(2), True)
    # Note: causes a NaN in _check_antecedents
    assert expand(meijerint_definite(exp(x), x, 0, I)[0]) == exp(I) - 1
    assert expand(meijerint_definite(exp(-x), x, 0, x)[0]) == \
        1 - exp(-exp(I*arg(x))*abs(x))

    # Test -oo to oo
    assert meijerint_definite(exp(-x**2), x, -oo, oo) == (sqrt(pi), True)
    assert meijerint_definite(exp(-abs(x)), x, -oo, oo) == (2, True)
    assert meijerint_definite(exp(-(2*x - 3)**2), x, -oo, oo) == \
        (sqrt(pi)/2, True)
    assert meijerint_definite(exp(-abs(2 * x - 3)), x, -oo, oo) == (1, True)
    assert meijerint_definite(
        exp(-((x - mu) / sigma)**2 / 2) / sqrt(2 * pi * sigma**2), x, -oo,
        oo) == (1, True)

    # Test one of the extra conditions for 2 g-functinos
    assert meijerint_definite(exp(-x) * sin(x), x, 0,
                              oo) == (Rational(1, 2), True)

    # Test a bug
    def res(n):
        return (1 / (1 + x**2)).diff(x, n).subs({x: 1}) * (-1)**n

    for n in range(6):
        assert integrate(exp(-x)*sin(x)*x**n, (x, 0, oo), meijerg=True) == \
            res(n)

    # This used to test trigexpand... now it is done by linear substitution
    assert simplify(integrate(exp(-x) * sin(x + a), (x, 0, oo),
                              meijerg=True)) == sqrt(2) * sin(a + pi / 4) / 2

    # Test the condition 14 from prudnikov.
    # (This is besselj*besselj in disguise, to stop the product from being
    #  recognised in the tables.)
    a, b, s = symbols('a b s')
    assert meijerint_definite(meijerg([], [], [a/2], [-a/2], x/4)
                              * meijerg([], [], [b/2], [-b/2], x/4)*x**(s - 1), x, 0, oo) == \
        (4*2**(2*s - 2)*gamma(-2*s + 1)*gamma(a/2 + b/2 + s)
         / (gamma(-a/2 + b/2 - s + 1)*gamma(a/2 - b/2 - s + 1)
            * gamma(a/2 + b/2 - s + 1)),
            And(0 < -2*re(4*s) + 8, 0 < re(a/2 + b/2 + s), re(2*s) < 1))

    # test a bug
    assert integrate(sin(x**a)*sin(x**b), (x, 0, oo), meijerg=True) == \
        Integral(sin(x**a)*sin(x**b), (x, 0, oo))

    # test better hyperexpand
    assert integrate(exp(-x**2)*log(x), (x, 0, oo), meijerg=True) == \
        (sqrt(pi)*polygamma(0, Rational(1, 2))/4).expand()

    # Test hyperexpand bug.
    n = symbols('n', integer=True)
    assert simplify(integrate(exp(-x)*x**n, x, meijerg=True)) == \
        lowergamma(n + 1, x)

    # Test a bug with argument 1/x
    alpha = symbols('alpha', positive=True)
    assert meijerint_definite((2 - x)**alpha*sin(alpha/x), x, 0, 2) == \
        (sqrt(pi)*alpha*gamma(alpha + 1)*meijerg(((), (alpha/2 + Rational(1, 2),
                                                       alpha/2 + 1)), ((0, 0, Rational(1, 2)), (-Rational(1, 2),)), alpha**2/16)/4, True)

    # test a bug related to 3016
    a, s = symbols('a s', positive=True)
    assert simplify(integrate(x**s*exp(-a*x**2), (x, -oo, oo))) == \
        a**(-s/2 - Rational(1, 2))*((-1)**s + 1)*gamma(s/2 + Rational(1, 2))/2
示例#4
0
def test_meijerint_definite():
    v, b = meijerint_definite(x, x, 0, 0)
    assert v.is_zero and b is True
    v, b = meijerint_definite(x, x, oo, oo)
    assert v.is_zero and b is True
示例#5
0
def test_meijerint():
    s, t, mu = symbols('s t mu', extended_real=True)
    assert integrate(meijerg([], [], [0], [], s*t)
                     * meijerg([], [], [mu/2], [-mu/2], t**2/4),
                     (t, 0, oo)).is_Piecewise
    s = symbols('s', positive=True)
    assert integrate(x**s*meijerg([[], []], [[0], []], x), (x, 0, oo)) == \
        gamma(s + 1)
    assert integrate(x**s*meijerg([[], []], [[0], []], x), (x, 0, oo),
                     meijerg=True) == gamma(s + 1)
    assert isinstance(integrate(x**s*meijerg([[], []], [[0], []], x),
                                (x, 0, oo), meijerg=False),
                      Integral)

    assert meijerint_indefinite(exp(x), x) == exp(x)

    # TODO what simplifications should be done automatically?
    # This tests "extra case" for antecedents_1.
    a, b = symbols('a b', positive=True)
    assert simplify(meijerint_definite(x**a, x, 0, b)[0]) == \
        b**(a + 1)/(a + 1)

    # This tests various conditions and expansions:
    meijerint_definite((x + 1)**3*exp(-x), x, 0, oo) == (16, True)

    # Again, how about simplifications?
    sigma, mu = symbols('sigma mu', positive=True)
    i, c = meijerint_definite(exp(-((x - mu)/(2*sigma))**2), x, 0, oo)
    assert simplify(i) == sqrt(pi)*sigma*(erf(mu/(2*sigma)) + 1)
    assert c

    i, _ = meijerint_definite(exp(-mu*x)*exp(sigma*x), x, 0, oo)
    # TODO it would be nice to test the condition
    assert simplify(i) == 1/(mu - sigma)

    # Test substitutions to change limits
    assert meijerint_definite(exp(x), x, -oo, 2) == (exp(2), True)
    # Note: causes a NaN in _check_antecedents
    assert expand(meijerint_definite(exp(x), x, 0, I)[0]) == exp(I) - 1
    assert expand(meijerint_definite(exp(-x), x, 0, x)[0]) == \
        1 - exp(-exp(I*arg(x))*abs(x))

    # Test -oo to oo
    assert meijerint_definite(exp(-x**2), x, -oo, oo) == (sqrt(pi), True)
    assert meijerint_definite(exp(-abs(x)), x, -oo, oo) == (2, True)
    assert meijerint_definite(exp(-(2*x - 3)**2), x, -oo, oo) == \
        (sqrt(pi)/2, True)
    assert meijerint_definite(exp(-abs(2*x - 3)), x, -oo, oo) == (1, True)
    assert meijerint_definite(exp(-((x - mu)/sigma)**2/2)/sqrt(2*pi*sigma**2),
                              x, -oo, oo) == (1, True)

    # Test one of the extra conditions for 2 g-functinos
    assert meijerint_definite(exp(-x)*sin(x), x, 0, oo) == (Rational(1, 2), True)

    # Test a bug
    def res(n):
        return (1/(1 + x**2)).diff(x, n).subs({x: 1})*(-1)**n
    for n in range(6):
        assert integrate(exp(-x)*sin(x)*x**n, (x, 0, oo), meijerg=True) == \
            res(n)

    # This used to test trigexpand... now it is done by linear substitution
    assert simplify(integrate(exp(-x)*sin(x + a), (x, 0, oo), meijerg=True)
                    ) == sqrt(2)*sin(a + pi/4)/2

    # Test the condition 14 from prudnikov.
    # (This is besselj*besselj in disguise, to stop the product from being
    #  recognised in the tables.)
    a, b, s = symbols('a b s')
    assert meijerint_definite(meijerg([], [], [a/2], [-a/2], x/4)
                              * meijerg([], [], [b/2], [-b/2], x/4)*x**(s - 1), x, 0, oo) == \
        (4*2**(2*s - 2)*gamma(-2*s + 1)*gamma(a/2 + b/2 + s)
         / (gamma(-a/2 + b/2 - s + 1)*gamma(a/2 - b/2 - s + 1)
            * gamma(a/2 + b/2 - s + 1)),
            And(0 < -2*re(4*s) + 8, 0 < re(a/2 + b/2 + s), re(2*s) < 1))

    # test a bug
    assert integrate(sin(x**a)*sin(x**b), (x, 0, oo), meijerg=True) == \
        Integral(sin(x**a)*sin(x**b), (x, 0, oo))

    # test better hyperexpand
    assert integrate(exp(-x**2)*log(x), (x, 0, oo), meijerg=True) == \
        (sqrt(pi)*polygamma(0, Rational(1, 2))/4).expand()

    # Test hyperexpand bug.
    n = symbols('n', integer=True)
    assert simplify(integrate(exp(-x)*x**n, x, meijerg=True)) == \
        lowergamma(n + 1, x)

    # Test a bug with argument 1/x
    alpha = symbols('alpha', positive=True)
    assert meijerint_definite((2 - x)**alpha*sin(alpha/x), x, 0, 2) == \
        (sqrt(pi)*alpha*gamma(alpha + 1)*meijerg(((), (alpha/2 + Rational(1, 2),
                                                       alpha/2 + 1)), ((0, 0, Rational(1, 2)), (-Rational(1, 2),)), alpha**2/16)/4, True)

    # test a bug related to 3016
    a, s = symbols('a s', positive=True)
    assert simplify(integrate(x**s*exp(-a*x**2), (x, -oo, oo))) == \
        a**(-s/2 - Rational(1, 2))*((-1)**s + 1)*gamma(s/2 + Rational(1, 2))/2