コード例 #1
0
ファイル: learnParameters.py プロジェクト: gravitino/gem
def learn_metal_gem(parentLabels, parent, childLabels, child, 
                    symmetric, squared, parameters=None):
    """learn optimal parameters for gem on metal data"""
   
    if parameters == None:
        ST0 = [1, 2]
        ST1 = [1, 2]
        TAU = [0,0.00390625,0.0078125,0.015625,0.03125,0.0625,0.125,0.25,0.5]
    else:
        ST0, ST1, TAU = parameters
   
    errors = []
   
    for St0 in ST0:
        for St1 in ST1:
            for E in TAU :
                func = lambda query, subject: \
                       dist.gem(query, subject, St0, St1, E, symmetric, squared)
                e, l = c.obtain_1NN_error(parentLabels, parent, 
                                          childLabels, child, func)

                errors.append((e, (St0, St1, E, symmetric, squared)))
                print errors[-1]
                
    errs = list(sorted(errors, key=lambda x: x[0][0]))
    
    # pick only the best and take parameter in the "middle"
    best = filter(lambda (x, y): x[0]==errs[0][0][0], errs)
    best.sort(key=lambda (x, y): y[2])
    best = best[len(best)/2]
   
    return best, errs
コード例 #2
0
ファイル: learnParameters.py プロジェクト: gravitino/gem
def loocv_gem(loocvLabels, loocvSet, St0, St1, E, symmetric, squared):
    """calculate LOOCV error rate for given parameters on a given set"""

    error = 0

    # 1NN with Leave One Out Cross Validation
    for index, (queryLabel, query) in enumerate(zip(loocvLabels, loocvSet)):
        search = np.vstack((loocvSet[:index], loocvSet[index+1:]))
        labels = np.hstack((loocvLabels[:index], loocvLabels[index+1:]))

        vals =[dist.gem(query, subject, St0, St1, E, symmetric, squared) 
               for subject in search]
        best = np.array(vals).argmin()
        
        if queryLabel != labels[best]:
            error +=1
    
    return error, len(loocvSet), float(error)/len(loocvSet)
コード例 #3
0
def loocv_gem(loocvLabels, loocvSet, St0, St1, E, symmetric, squared):
    """calculate LOOCV error rate for given parameters on a given set"""

    error = 0

    # 1NN with Leave One Out Cross Validation
    for index, (queryLabel, query) in enumerate(zip(loocvLabels, loocvSet)):
        search = np.vstack((loocvSet[:index], loocvSet[index + 1:]))
        labels = np.hstack((loocvLabels[:index], loocvLabels[index + 1:]))

        vals = [
            dist.gem(query, subject, St0, St1, E, symmetric, squared)
            for subject in search
        ]
        best = np.array(vals).argmin()

        if queryLabel != labels[best]:
            error += 1

    return error, len(loocvSet), float(error) / len(loocvSet)
コード例 #4
0
def learn_metal_gem(parentLabels,
                    parent,
                    childLabels,
                    child,
                    symmetric,
                    squared,
                    parameters=None):
    """learn optimal parameters for gem on metal data"""

    if parameters == None:
        ST0 = [1, 2]
        ST1 = [1, 2]
        TAU = [
            0, 0.00390625, 0.0078125, 0.015625, 0.03125, 0.0625, 0.125, 0.25,
            0.5
        ]
    else:
        ST0, ST1, TAU = parameters

    errors = []

    for St0 in ST0:
        for St1 in ST1:
            for E in TAU:
                func = lambda query, subject: \
                       dist.gem(query, subject, St0, St1, E, symmetric, squared)
                e, l = c.obtain_1NN_error(parentLabels, parent, childLabels,
                                          child, func)

                errors.append((e, (St0, St1, E, symmetric, squared)))
                print errors[-1]

    errs = list(sorted(errors, key=lambda x: x[0][0]))

    # pick only the best and take parameter in the "middle"
    best = filter(lambda (x, y): x[0] == errs[0][0][0], errs)
    best.sort(key=lambda (x, y): y[2])
    best = best[len(best) / 2]

    return best, errs