def removeEntity(self, entity): activeEntity=Machine.removeEntity(self, entity) if self.state==-1: activeEntity.status='Bad' else: self.numGoodParts+=1 return activeEntity
def removeEntity(self, entity): activeEntity = Machine.removeEntity(self, entity) if self.state == -1: activeEntity.status = 'Bad' else: self.numGoodParts += 1 return activeEntity
def removeEntity(self,entity=None): # run the default method activeEntity=Machine.removeEntity(self, entity) # count the number of parts in the server. # If it is empty have one internal queue to signal the queue before the compound object if not self.countInternalParts(): self.sendSignal(receiver=QB, signal=QB.canDispose, sender=Q1) return activeEntity
def removeEntity(self, entity=None): # run the default method activeEntity = Machine.removeEntity(self, entity) # count the number of parts in the server. # If it is empty have one internal queue to signal the queue before the compound object if not self.countInternalParts(): self.sendSignal(receiver=QB, signal=QB.canDispose, sender=Q1) return activeEntity
def getEntity(self): activeEntity=Machine.getEntity(self) for queue in G.InternalQueueList: station=queue.next[0] # do not send the signal if it is already triggered if not queue.canDispose.triggered: self.sendSignal(receiver=queue, signal=queue.canDispose, sender=station) return activeEntity
def getEntity(self): activeEntity = Machine.getEntity(self) for queue in G.InternalQueueList: station = queue.next[0] # do not send the signal if it is already triggered if not queue.canDispose.triggered: self.sendSignal(receiver=queue, signal=queue.canDispose, sender=station) return activeEntity
# define the objects of the model S = BatchSource('S', 'Source', interArrivalTime={'Fixed': { 'mean': 1.5 }}, entity='Dream.Batch', batchNumberOfUnits=100) Q = Queue('Q', 'StartQueue', capacity=100000) BD = BatchDecomposition('BC', 'BatchDecomposition', numberOfSubBatches=4, processingTime={'Fixed': { 'mean': 1 }}) M1 = Machine('M1', 'Machine1', processingTime={'Fixed': {'mean': 0.5}}) Q1 = LineClearance('Q1', 'Queue1', capacity=2) M2 = Machine('M2', 'Machine2', processingTime={'Fixed': {'mean': 4}}) BRA = BatchReassembly('BRA', 'BatchReassembly', numberOfSubBatches=4, processingTime={'Fixed': { 'mean': 0 }}) M3 = Machine('M3', 'Machine3', processingTime={'Fixed': {'mean': 1}}) E = Exit('E', 'Exit') # define the predecessors and successors for the objects S.defineRouting([Q]) Q.defineRouting([S], [BD]) BD.defineRouting([Q], [M1])
from dream.simulation.imports import Machine, Source, Exit, Part, Queue, NonStarvingEntry from dream.simulation.Globals import runSimulation #define the objects of the model NS = NonStarvingEntry('NS1', 'Entry', entityData={'_class': 'Dream.Part'}) M1 = Machine('M1', 'Machine1', processingTime={'Exp': {'mean': 1}}) Q2 = Queue('Q2', 'Queue2') M2 = Machine('M2', 'Machine2', processingTime={'Exp': {'mean': 3}}) Q3 = Queue('Q3', 'Queue3') M3 = Machine('M3', 'Machine3', processingTime={'Exp': {'mean': 5}}) E = Exit('E1', 'Exit') #define predecessors and successors for the objects NS.defineRouting(successorList=[M1]) M1.defineRouting(predecessorList=[NS], successorList=[Q2]) Q2.defineRouting(predecessorList=[M1], successorList=[M2]) M2.defineRouting(predecessorList=[Q2], successorList=[Q3]) Q3.defineRouting(predecessorList=[M2], successorList=[M3]) M3.defineRouting(predecessorList=[Q3], successorList=[E]) E.defineRouting(predecessorList=[M3]) def main(test=0): # add all the objects in a list objectList = [NS, M1, M2, M3, Q2, Q3, E] # set the length of the experiment maxSimTime = 480 solutionList = [] for i in range(1, 10):
def countInternalParts(self): totalParts = 0 for object in G.InternalProcessList + G.InternalQueueList: totalParts += len(object.getActiveObjectQueue()) return totalParts QB = Queue('QB', 'QueueBefore', capacity=float("inf")) Q1 = InternalQueue('Q1', 'Q1', capacity=1) M1 = InternalProcess('M1', 'M1', processingTime={'Exp': {'mean': 1}}) Q2 = InternalQueue('Q2', 'Q2', capacity=1) M2 = InternalProcess('M2', 'M2', processingTime={'Exp': {'mean': 1}}) Q3 = InternalQueue('Q3', 'Q3', capacity=1) M3 = InternalProcess('M3', 'M3', processingTime={'Exp': {'mean': 1}}) QA = Queue('QA', 'QueueAfter', capacity=float("inf")) MA = Machine('MA', 'MachineAfter', processingTime={'Exp': {'mean': 1}}) E = Exit('E', 'Exit') QB.defineRouting(successorList=[Q1, Q2, Q3]) Q1.defineRouting(predecessorList=[QB], successorList=[M1]) Q2.defineRouting(predecessorList=[QB], successorList=[M2]) Q3.defineRouting(predecessorList=[QB], successorList=[M3]) M1.defineRouting(predecessorList=[Q1], successorList=[QA]) M2.defineRouting(predecessorList=[Q2], successorList=[QA]) M3.defineRouting(predecessorList=[Q3], successorList=[QA]) QA.defineRouting(predecessorList=[M1, M2, M3], successorList=[MA]) MA.defineRouting(predecessorList=[QA], successorList=[E]) E.defineRouting(predecessorList=[MA]) P1 = Part('P1', 'P1', currentStation=QB) P2 = Part('P2', 'P2', currentStation=QB)
from dream.simulation.imports import Machine, Source, Exit, Part, Queue, NonStarvingEntry from dream.simulation.Globals import runSimulation #define the objects of the model NS=NonStarvingEntry('NS1','Entry',entityData={'_class':'Dream.Part'}) M1=Machine('M1','Machine1', processingTime={'Exp':{'mean':1}}) Q2=Queue('Q2','Queue2') M2=Machine('M2','Machine2', processingTime={'Exp':{'mean':3}}) Q3=Queue('Q3','Queue3') M3=Machine('M3','Machine3', processingTime={'Exp':{'mean':5}}) E=Exit('E1','Exit') #define predecessors and successors for the objects NS.defineRouting(successorList=[M1]) M1.defineRouting(predecessorList=[NS],successorList=[Q2]) Q2.defineRouting(predecessorList=[M1],successorList=[M2]) M2.defineRouting(predecessorList=[Q2],successorList=[Q3]) Q3.defineRouting(predecessorList=[M2],successorList=[M3]) M3.defineRouting(predecessorList=[Q3],successorList=[E]) E.defineRouting(predecessorList=[M3]) def main(test=0): # add all the objects in a list objectList=[NS,M1,M2,M3,Q2,Q3,E] # set the length of the experiment maxSimTime=480 solutionList=[] for i in range(1,10):
def initialize(self): Machine.initialize(self) self.numGoodParts=0 self.state=1
from dream.simulation.imports import Machine, Queue, Exit, Part, ExcelHandler from dream.simulation.Globals import runSimulation, G #define the objects of the model Q=Queue('Q1','Queue', capacity=1) M=Machine('M1','Machine', processingTime={'Fixed':{'mean':0.25}}) E=Exit('E1','Exit') P1=Part('P1', 'Part1', currentStation=Q) #define predecessors and successors for the objects Q.defineRouting(successorList=[M]) M.defineRouting(predecessorList=[Q],successorList=[E]) E.defineRouting(predecessorList=[M]) def main(test=0): # add all the objects in a list objectList=[Q,M,E,P1] # set the length of the experiment maxSimTime=float('inf') # call the runSimulation giving the objects and the length of the experiment runSimulation(objectList, maxSimTime, trace='Yes') # calculate metrics working_ratio = (M.totalWorkingTime/G.maxSimTime)*100 # return results for the test if test: return {"parts": E.numOfExits, "simulationTime":E.timeLastEntityLeft, "working_ratio": working_ratio}
#the custom queue class SelectiveQueue(Queue): #override so that it chooses receiver according to priority def selectReceiver(self,possibleReceivers=[]): # sort the receivers according to their priority possibleReceivers.sort(key=lambda x: x.priority, reverse=True) if possibleReceivers[0].canAccept(): return possibleReceivers[0] elif possibleReceivers[1].canAccept(): return possibleReceivers[1] return None #define the objects of the model S=Source('S','Source', interArrivalTime={'Fixed':{'mean':0.5}}, entity='Dream.Part') Q=SelectiveQueue('Q','Queue', capacity=float("inf")) M1=Machine('M1','Milling1', processingTime={'Fixed':{'mean':0.25}}) M2=Machine('M2','Milling2', processingTime={'Fixed':{'mean':0.25}}) E=Exit('E1','Exit') F=Failure(victim=M1, distribution={'TTF':{'Fixed':{'mean':60.0}},'TTR':{'Fixed':{'mean':5.0}}}) #create priority attribute in the Machines M1.priority=10 M2.priority=0 #define predecessors and successors for the objects S.defineRouting([Q]) Q.defineRouting([S],[M1,M2]) M1.defineRouting([Q],[E]) M2.defineRouting([Q],[E]) E.defineRouting([M1,M2])
def canAccept(self, callerObject=None): # do not start processing unless there are enough parts # (i.e. equal to the number of processes) in the compound machine if not self.countInternalParts()==len(G.InternalProcessList): return False return Machine.canAccept(self, callerObject)
from dream.simulation.imports import Source, Queue, Machine, Exit from dream.simulation.Globals import runSimulation # This is the baby step to building a complicated model of the behavior # of a fleet of systems with multiple stakeholders. # The baby step includes: # A source to generate students # A Queue for students to wait for a flight # A machine (aircraft) to give students time # An exit for graduated students # The source is API for Aviation Preflight Indocrination API = Source('API', 'Source', interArrivalTime={'Fixed': {'mean': 0.5}}, entity='Dream.Part') RR = Queue('ReadyRoom', 'Queue', capacity=1) AC = Machine('AC1', 'Machine', processingTime={'Fixed': {'mean': 0.25}}) E = Exit('The Fleet', 'The Fleet') # The predecessors and successors for the objects API.defineRouting(successorList=[RR]) RR.defineRouting(predecessorList=[API], successorList=[AC]) AC.defineRouting(predecessorList=[RR], successorList=[E]) E.defineRouting(predecessorList=[AC]) def main(test=0): # add all the objects in a list objectList=[API, RR, AC, E] # set the length of the experiment maxSimTime = 1440.0 # call the runSimulation giving the objects and the length of the # experiment
if possibleReceivers[0].canAccept(): return possibleReceivers[0] elif possibleReceivers[1].canAccept(): return possibleReceivers[1] return None #define the objects of the model S = Source('S', 'Source', interArrivalTime={'Fixed': { 'mean': 0.5 }}, entity='Dream.Part') Q = SelectiveQueue('Q', 'Queue', capacity=float("inf")) M1 = Machine('M1', 'Milling1', processingTime={'Fixed': {'mean': 0.25}}) M2 = Machine('M2', 'Milling2', processingTime={'Fixed': {'mean': 0.25}}) E = Exit('E1', 'Exit') F = Failure(victim=M1, distribution={ 'TTF': { 'Fixed': { 'mean': 60.0 } }, 'TTR': { 'Fixed': { 'mean': 5.0 } } })
from dream.simulation.imports import Machine, BatchSource, Exit, Batch, BatchDecomposition, Queue, G from dream.simulation.imports import simulate, activate, initialize # define the objects of the model S=BatchSource('S','Source',interarrivalTime={'distributionType':'Fixed','mean':0.5}, entity='Dream.Batch', batchNumberOfUnits=4) Q=Queue('Q','StartQueue',capacity=100000) BD=BatchDecomposition('BC', 'BatchDecomposition', numberOfSubBatches=4, processingTime={'distributionType':'Fixed','mean':1}) M=Machine('M','Machine',processingTime={'distributionType':'Fixed','mean':0.5}) E=Exit('E','Exit') # add all the objects in the G.ObjList so that they can be easier accessed later G.ObjList=[S,Q,BD,M,E] # define the predecessors and successors for the objects S.defineRouting([Q]) Q.defineRouting([S],[BD]) BD.defineRouting([Q],[M]) M.defineRouting([BD],[E]) E.defineRouting([M]) def main(): # initialize the simulation (SimPy method) initialize() # initialize all the objects for object in G.ObjList: object.initialize() # activate all the objects for object in G.ObjList: activate(object,object.run()) # set G.maxSimTime 1440.0 minutes (1 day) G.maxSimTime=1440.0 # run the simulation simulate(until=G.maxSimTime)
def postProcessing(self): Machine.postProcessing(self, MaxSimtime=maxSimTime) self.GoodExits.append(self.numGoodParts)
def canAccept(self, callerObject=None): # do not start processing unless there are enough parts # (i.e. equal to the number of processes) in the compound machine if not self.countInternalParts() == len(G.InternalProcessList): return False return Machine.canAccept(self, callerObject)
from dream.simulation.imports import Machine, Source, Exit, Part, Repairman, Queue, Failure from dream.simulation.Globals import runSimulation #define the objects of the model R = Repairman('R1', 'Bob') S = Source('S1', 'Source', interarrivalTime={'Exp': { 'mean': 0.5 }}, entity='Dream.Part') M1 = Machine('M1', 'Machine1', processingTime={ 'Normal': { 'mean': 0.25, 'stdev': 0.1, 'min': 0.1, 'max': 1 } }) M2 = Machine('M2', 'Machine2', processingTime={ 'Normal': { 'mean': 1.5, 'stdev': 0.3, 'min': 0.5, 'max': 5 } }) Q = Queue('Q1', 'Queue')
def haveToDispose(self, callerObject=None): for object in G.InternalProcessList: # if there is one other machine processing return False if object.isProcessing: return False return Machine.haveToDispose(self, callerObject)
from dream.simulation.imports import Machine, Source, Exit, Part, Frame, Assembly, Failure from dream.simulation.Globals import runSimulation #define the objects of the model Frame.capacity=4 Sp=Source('SP','Parts', interArrivalTime={'Fixed':{'mean':0.5}}, entity='Dream.Part') Sf=Source('SF','Frames', interArrivalTime={'Fixed':{'mean':2}}, entity='Dream.Frame') M=Machine('M','Machine', processingTime={'Fixed':{'mean':0.25}}) A=Assembly('A','Assembly', processingTime={'Fixed':{'mean':2}}) E=Exit('E1','Exit') F=Failure(victim=M, distribution={'TTF':{'Fixed':{'mean':60.0}},'TTR':{'Fixed':{'mean':5.0}}}) #define predecessors and successors for the objects Sp.defineRouting([A]) Sf.defineRouting([A]) A.defineRouting([Sp,Sf],[M]) M.defineRouting([A],[E]) E.defineRouting([M]) def main(test=0): # add all the objects in a list objectList=[Sp,Sf,M,A,E,F] # set the length of the experiment maxSimTime=1440.0 # call the runSimulation giving the objects and the length of the experiment runSimulation(objectList, maxSimTime) # calculate metrics working_ratio=(A.totalWorkingTime/maxSimTime)*100
#define the objects of the model Frame.capacity = 4 Sp = Source('SP', 'Parts', interArrivalTime={'Fixed': { 'mean': 0.5 }}, entity='Dream.Part') Sf = Source('SF', 'Frames', interArrivalTime={'Fixed': { 'mean': 2 }}, entity='Dream.Frame') M = Machine('M', 'Machine', processingTime={'Fixed': {'mean': 0.25}}) A = Assembly('A', 'Assembly', processingTime={'Fixed': {'mean': 2}}) E = Exit('E1', 'Exit') F = Failure(victim=M, distribution={ 'TTF': { 'Fixed': { 'mean': 60.0 } }, 'TTR': { 'Fixed': { 'mean': 5.0 } }
def canAccept(self, callerObject=None): if self.locked: return False if self.state==0: return False return Machine.canAccept(self, callerObject)
if not buffer == machine.previous[0]: machine.previous[0] = buffer break # if canDispose is not triggered in the predecessor send it if not machine.previous[0].canDispose.triggered: # a succeed function on an event must always take attributes the transmitter and the time of the event succeedTuple = (machine, G.env.now) machine.previous[0].canDispose.succeed(succeedTuple) print G.env.now, 'from now on the machine will take from', machine.previous[ 0].id #define the objects of the model Q1 = Queue('Q1', 'Queue1', capacity=float('inf')) Q2 = Queue('Q2', 'Queue2', capacity=float('inf')) M = Machine('M1', 'Machine', processingTime={'Fixed': {'mean': 3}}) E = Exit('E1', 'Exit') P1 = Part('P1', 'Part1', currentStation=Q1) entityList = [] for i in range(5): # create the WIP in a loop Q1PartId = 'Q1_P' + str(i) Q1PartName = 'Q1_Part' + str(i) PQ1 = Part(Q1PartId, Q1PartName, currentStation=Q1) entityList.append(PQ1) Q2PartId = 'Q2_P' + str(i) Q2PartName = 'Q2_Part' + str(i) PQ2 = Part(Q2PartId, Q2PartName, currentStation=Q2) entityList.append(PQ2) #define predecessors and successors for the objects Q1.defineRouting(successorList=[M])
from dream.simulation.imports import Machine, Source, Exit, Batch, BatchDecomposition,\ BatchSource, BatchReassembly, Queue, LineClearance, ExcelHandler, ExcelHandler from dream.simulation.Globals import runSimulation # define the objects of the model S=BatchSource('S','Source',interArrivalTime={'Fixed':{'mean':1.5}}, entity='Dream.Batch', batchNumberOfUnits=100) Q=Queue('Q','StartQueue',capacity=100000) BD=BatchDecomposition('BC', 'BatchDecomposition', numberOfSubBatches=4, processingTime={'Fixed':{'mean':1}}) M1=Machine('M1','Machine1',processingTime={'Fixed':{'mean':0.5}}) Q1=LineClearance('Q1','Queue1',capacity=2) M2=Machine('M2','Machine2',processingTime={'Fixed':{'mean':4}}) BRA=BatchReassembly('BRA', 'BatchReassembly', numberOfSubBatches=4, processingTime={'Fixed':{'mean':0}}) M3=Machine('M3','Machine3',processingTime={'Fixed':{'mean':1}}) E=Exit('E','Exit') # define the predecessors and successors for the objects S.defineRouting([Q]) Q.defineRouting([S],[BD]) BD.defineRouting([Q],[M1]) M1.defineRouting([BD],[Q1]) Q1.defineRouting([M1],[M2]) M2.defineRouting([Q1],[BRA]) BRA.defineRouting([M2],[M3]) M3.defineRouting([BRA],[E]) E.defineRouting([M3]) def main(test=0): # add all the objects in a list objectList=[S,Q,BD,M1,Q1,M2,BRA,M3,E] # set the length of the experiment
def getEntity(self): activeEntity=Machine.getEntity(self) #call the parent method to get the entity part=self.getActiveObjectQueue()[0] #retrieve the obtained part part.machineId=self.id #create an attribute to the obtained part and give it the value of the object's id return activeEntity #return the entity obtained
def canAccept(self, callerObject=None): if self.locked: return False if self.state == 0: return False return Machine.canAccept(self, callerObject)
from dream.simulation.imports import Machine, Source, Exit, Part, Repairman, Queue, Failure from dream.simulation.Globals import runSimulation #define the objects of the model R = Repairman('R1', 'Bob') S = Source('S1', 'Source', interArrivalTime={'Fixed': { 'mean': 0.5 }}, entity='Dream.Part') M1 = Machine('M1', 'Machine1', processingTime={'Fixed': {'mean': 0.25}}) Q = Queue('Q1', 'Queue') M2 = Machine('M2', 'Machine2', processingTime={'Fixed': {'mean': 1.5}}) E = Exit('E1', 'Exit') #create failures F1 = Failure(victim=M1, distribution={ 'TTF': { 'Fixed': { 'mean': 60.0 } }, 'TTR': { 'Fixed': { 'mean': 5.0 } } }, repairman=R) F2 = Failure(victim=M2,
def initialize(self): Machine.initialize(self) self.numGoodParts = 0 self.state = 1
from dream.simulation.imports import Machine, Source, Exit, Part, G, Repairman, Queue, Failure from dream.simulation.imports import simulate, activate, initialize #define the objects of the model R=Repairman('R1', 'Bob') S=Source('S1','Source', interarrivalTime={'distributionType':'Fixed','mean':0.5}, entity='Dream.Part') M1=Machine('M1','Machine1', processingTime={'distributionType':'Fixed','mean':0.25}) Q=Queue('Q1','Queue') M2=Machine('M2','Machine2', processingTime={'distributionType':'Fixed','mean':1.5}) E=Exit('E1','Exit') #create failures F1=Failure(victim=M1, distribution={'distributionType':'Fixed','MTTF':60,'MTTR':5}, repairman=R) F2=Failure(victim=M2, distribution={'distributionType':'Fixed','MTTF':40,'MTTR':10}, repairman=R) G.ObjList=[S,M1,M2,E,Q] #add all the objects in G.ObjList so that they can be easier accessed later G.MachineList=[M1,M2] G.ObjectInterruptionList=[F1,F2] #add all the objects in G.ObjList so that they can be easier accessed later #define predecessors and successors for the objects S.defineRouting([M1]) M1.defineRouting([S],[Q]) Q.defineRouting([M1],[M2]) M2.defineRouting([Q],[E]) E.defineRouting([M2]) def main(): initialize() #initialize the simulation (SimPy method) #initialize all the objects
else: for buffer in possiblePredecessors: if not buffer==machine.previous[0]: machine.previous[0]=buffer break # if canDispose is not triggered in the predecessor send it if not machine.previous[0].canDispose.triggered: # a succeed function on an event must always take attributes the transmitter and the time of the event succeedTuple=(machine, G.env.now) machine.previous[0].canDispose.succeed(succeedTuple) print G.env.now, 'from now on the machine will take from', machine.previous[0].id #define the objects of the model Q1=Queue('Q1','Queue1', capacity=float('inf')) Q2=Queue('Q2','Queue2', capacity=float('inf')) M=Machine('M1','Machine', processingTime={'Fixed':{'mean':3}}) E=Exit('E1','Exit') P1=Part('P1', 'Part1', currentStation=Q1) entityList=[] for i in range(5): # create the WIP in a loop Q1PartId='Q1_P'+str(i) Q1PartName='Q1_Part'+str(i) PQ1=Part(Q1PartId, Q1PartName, currentStation=Q1) entityList.append(PQ1) Q2PartId='Q2_P'+str(i) Q2PartName='Q2_Part'+str(i) PQ2=Part(Q2PartId, Q2PartName, currentStation=Q2) entityList.append(PQ2) #define predecessors and successors for the objects Q1.defineRouting(successorList=[M])
# of a fleet of systems with multiple stakeholders. # The baby step includes: # A source to generate students # A Queue for students to wait for a flight # A machine (aircraft) to give students time # An exit for graduated students # The source is API for Aviation Preflight Indocrination API = Source('API', 'Source', interArrivalTime={'Fixed': { 'mean': 0.5 }}, entity='Dream.Part') RR = Queue('ReadyRoom', 'Queue', capacity=1) AC = Machine('AC1', 'Machine', processingTime={'Fixed': {'mean': 0.25}}) E = Exit('The Fleet', 'The Fleet') # The predecessors and successors for the objects API.defineRouting(successorList=[RR]) RR.defineRouting(predecessorList=[API], successorList=[AC]) AC.defineRouting(predecessorList=[RR], successorList=[E]) E.defineRouting(predecessorList=[AC]) def main(test=0): # add all the objects in a list objectList = [API, RR, AC, E] # set the length of the experiment maxSimTime = 1440.0 # call the runSimulation giving the objects and the length of the