コード例 #1
0
def rand_map_flat(shape,
                  wcs,
                  ps,
                  lmax=None,
                  lens=True,
                  aberrate=True,
                  beta=None,
                  dir=None,
                  seed=None,
                  dtype=None,
                  verbose=False,
                  recenter=False,
                  pad=0):
    """Simulate a random flat-sky map. The input spectrum should be
	[{phi,T,E,B},{phi,T,E,b},nl] of lens is True, and just [{T,E,B},{T,E,B},nl]
	otherwise."""
    if dtype is None: dtype = np.float64
    if dir is None: dir = aberration.dir_equ
    if beta is None: beta = aberration.beta
    ctype = np.result_type(dtype, 0j)
    if verbose: print "Generating unlensed cmb"
    # No position calculation necessary if we're not lensing or aberrating.
    if not lens and not aberrate:
        return enmap.rand_map(shape, wcs, ps, seed=seed)
    # Otherwise we must deal with various displacements
    if aberrate: pad += np.pi * beta * 1.2
    pad_pix = int(pad / enmap.pixsize(shape, wcs)**0.5)
    if pad_pix > 0:
        if verbose: print "Padding"
        template = enmap.zeros(shape, wcs, np.int16)
        template, pslice = enmap.pad(template, pad_pix, return_slice=True)
        pshape, pwcs = template.shape, template.wcs
    else:
        pshape, pwcs = shape, wcs
    # Simulate (padded) lensing map
    if lens:
        maps = enmap.rand_map((ps.shape[0], ) + pshape[-2:], pwcs, ps)
        phi, unlensed = maps[0], maps[1:]
        if verbose: print "Lensing"
        m = lensing.lens_map_flat(unlensed, phi)
    else:
        m = enmap.rand_map((ps.shape[0], ) + pshape[-2:], pwcs, ps)
    # Then handle aberration if necessary
    if aberrate:
        if verbose: print "Computing aberration displacement"
        pos = m.posmap()
        pos = enmap.samewcs(
            aberration.remap(pos[1::-1], dir=dir, beta=beta,
                             recenter=recenter), pos)
        amp = pos[3]
        pos = pos[1::-1]
        if verbose: print "Interpolating aberration"
        m = enmap.samewcs(m.at(pos, mask_nan=False), m)
        if verbose: print "Applying modulation"
        m *= amp
    if pad_pix > 0:
        if verbose: print "Unpadding"
        m = m[pslice]
    return m
コード例 #2
0
ファイル: lensRecon.py プロジェクト: TevaIlan/alhazen
def getKappaSZ(bSims,snap,massIndex,px,thetaMapshape):
    b = bSims
    PIX = 2048
    maps, z, kappaSimDat, szMapuKDat, projectedM500, trueM500, trueR500, pxInRad, pxInRad = b.getMaps(snap,massIndex,freqGHz=150.)
    pxIn = pxInRad * 180.*60./np.pi
    hwidth = PIX*pxIn/2.
    print "At redshift ", z , " stamp is ", hwidth ," arcminutes wide."
    
    # input pixelization
    shapeSim, wcsSim = enmap.geometry(pos=[[-hwidth*arcmin,-hwidth*arcmin],[hwidth*arcmin,hwidth*arcmin]], res=pxIn*arcmin, proj="car")
    kappaSim = enmap.enmap(kappaSimDat,wcsSim)
    szMapuK = enmap.enmap(szMapuKDat,wcsSim)
    
    # downgrade to native
    shapeOut, wcsOut = enmap.geometry(pos=[[-hwidth*arcmin,-hwidth*arcmin],[hwidth*arcmin,hwidth*arcmin]], res=px*arcmin, proj="car")
    kappaMap = enmap.project(kappaSim,shapeOut,wcsOut)
    szMap = enmap.project(szMapuK,shapeOut,wcsOut)

    print thetaMapshape
    print szMap.shape

    if szMap.shape[0]>thetaMapshape[0]:
        kappaMap = enmap.project(kappaSim,thetaMapshape,wcsOut)
        szMap = enmap.project(szMapuK,thetaMapshape,wcsOut)
    else:
        diffPad = ((np.array(thetaMapshape) - np.array(szMap.shape))/2.+0.5).astype(int)
    
        apodWidth = 25
        kappaMap = enmap.pad(enmap.apod(kappaMap,apodWidth),diffPad)[:-1,:-1]
        szMap = enmap.pad(enmap.apod(szMap,apodWidth),diffPad)[:-1,:-1]
        # print szMap.shape
        assert szMap.shape==thetaMap.shape

    # print z, projectedM500
    # pl = Plotter()
    # pl.plot2d(kappaMap)
    # pl.done("output/kappasim.png")
    # pl = Plotter()
    # pl.plot2d(szMap)
    # pl.done("output/szsim.png")
    # sys.exit()

    # print "kappaint ", kappaMap[thetaMap*60.*180./np.pi<10.].mean()
    return kappaMap,szMap
コード例 #3
0
def sim_srcs(shape, wcs, srcs, beam, omap=None, dtype=None, nsigma=5, rmax=None, method="loop", mmul=1,
		return_padded=False):
	"""Simulate a point source map in the geometry given by shape, wcs
	for the given srcs[nsrc,{dec,ra,T...}], using the beam[{r,val},npoint],
	which must be equispaced. If omap is specified, the sources will be
	added to it in place. All angles are in radians. The beam is only evaluated up to
	the point where it reaches exp(-0.5*nsigma**2) unless rmax is specified, in which
	case this gives the maximum radius. mmul gives a factor to multiply the resulting
	source model by. This is mostly useful in conction with omap. method can be
	"loop" or "vectorized", but "loop" is both faster and uses less memory, so there's
	no point in using the latter.
	
	The source simulation is sped up by using a source lookup grid.
	"""
	if omap is None: omap = enmap.zeros(shape, wcs, dtype)
	ishape = omap.shape
	omap   = omap.preflat
	ncomp  = omap.shape[0]
	# In keeping with the rest of the functions here, srcs is [nsrc,{dec,ra,T,Q,U}].
	# The beam parameters are ignored - the beam argument is used instead
	amps = srcs[:,2:2+ncomp]
	poss = srcs[:,:2].copy()
	# Rewind positions to let us use flat-sky approximation for distance calculations
	#wcs  = enmap.enlib.wcs.fix_wcs(wcs)
	ref  = np.mean(enmap.box(shape, wcs, corner=False)[:,1])
	poss[:,1] = utils.rewind(poss[:,1], ref)
	beam = expand_beam(beam, nsigma, rmax)
	rmax = nsigma2rmax(beam, nsigma)
	# Pad our map by rmax, so we get the contribution from sources
	# just ourside our area. We will later split our map into cells of size cres. Let's
	# adjust the padding so we have a whole number of cells
	cres = utils.nint(rmax/omap.pixshape())
	epix = cres-(omap.shape[-2:]+2*cres)%cres
	padding = [cres,cres+epix]
	wmap, wslice  = enmap.pad(omap, padding, return_slice=True)
	# Overall we will have this many grid cells
	cshape = wmap.shape[-2:]/cres
	# Find out which sources matter for which cells
	srcpix = wmap.sky2pix(poss.T).T
	pixbox= np.array([[0,0],wmap.shape[-2:]],int)
	nhit, cell_srcs = build_src_cells(pixbox, srcpix, cres)
	posmap = wmap.posmap()
	model = eval_srcs_loop(posmap, poss, amps, beam, cres, nhit, cell_srcs)
	# Update our work map, through our view
	if mmul != 1: model *= mmul
	wmap  += model
	if not return_padded:
		# Copy out
		omap[:] = wmap[wslice]
		# Restore shape
		omap = omap.reshape(ishape)
		return omap
	else:
		return wmap.reshape(ishape[:-2]+wmap.shape[-2:]), wslice
コード例 #4
0
def lens_map_flat(cmb_map, phi_map):
    raw_pix = cmb_map.pixmap() + enmap.grad_pix(phi_map)
    # And extract the interpolated values. Because of a bug in map_pixels with
    # mode="wrap", we must handle wrapping ourselves.
    npad = int(
        np.ceil(
            max(np.max(-raw_pix),
                np.max(raw_pix -
                       np.array(cmb_map.shape[-2:])[:, None, None]))))
    pmap = enmap.pad(cmb_map, npad, wrap=True)
    return enmap.samewcs(
        utils.interpol(pmap, raw_pix + npad, order=4, mode="wrap"), cmb_map)
コード例 #5
0
def init_geometry(ishape,iwcs):
    modlmap = enmap.modlmap(ishape,iwcs)
    bin_edges = np.arange(args.kellmin,args.kellmax,args.dell)
    binner = stats.bin2D(modlmap,bin_edges)
    if args.beam<1e-5:
        kbeam = None
    else:
        kbeam = maps.gauss_beam(modlmap,args.beam)
    lmax = modlmap.max()
    ells = np.arange(2,lmax,1)
    wnoise_TT = ells*0.+(args.noise*(np.pi/180./60.))**2.
    wnoise_PP = 2.*wnoise_TT
    nT = modlmap*0.+(args.noise*(np.pi/180./60.))**2.
    nP = 2.*nT
    ncomp = 3 if pol else 1
    ps = np.zeros((ncomp,ncomp,ells.size))
    ps[0,0] = wnoise_TT
    if pol:
        ps[1,1] = wnoise_PP
        ps[2,2] = wnoise_PP
    oshape = (3,)+ishape if pol else ishape

    if not(args.flat) and args.noise_pad>1.e-5:
        # Pad noise sim geometry
        pad_width_deg = args.noise_pad
        pad_width = pad_width_deg * np.pi/180.
        res = maps.resolution(oshape[-2:],iwcs)
        pad_pixels = int(pad_width/res)
        template = enmap.zeros(oshape,iwcs)
        btemplate = enmap.pad(template,pad_pixels)
        bshape,bwcs = btemplate.shape,btemplate.wcs
        del template
        del btemplate
        ngen = maps.MapGen(bshape,bwcs,ps)
    else:
        ngen = maps.MapGen(oshape,iwcs,ps)
    
    tmask = maps.mask_kspace(ishape,iwcs,lmin=args.tellmin,lmax=args.tellmax)
    pmask = maps.mask_kspace(ishape,iwcs,lmin=args.pellmin,lmax=args.pellmax)
    kmask = maps.mask_kspace(ishape,iwcs,lmin=args.kellmin,lmax=args.kellmax)

    qest = lensing.qest(ishape,iwcs,theory,noise2d=nT,beam2d=kbeam,kmask=tmask,noise2d_P=nP,kmask_P=pmask,kmask_K=kmask,pol=pol,grad_cut=None,unlensed_equals_lensed=True)

    taper,w2 = maps.get_taper_deg(ishape,iwcs,taper_width_degrees = args.taper_width,pad_width_degrees = args.pad_width)
    fc = maps.FourierCalc(oshape,iwcs,iau=args.iau)

    
    purifier = maps.Purify(ishape,iwcs,taper) if args.purify else None

    
    return qest,ngen,kbeam,binner,taper,fc,purifier
コード例 #6
0
ファイル: source_model.py プロジェクト: jit9/enlib
 def draw(self, shape, wcs, window=False, nsigma=10, pad=False):
     m = enmap.zeros((3, ) + shape[-2:], wcs)
     w = np.max(self.widths) * nsigma
     # Find all sources that enter even partially into our area
     ipos = np.array([
         enmap.sky2pix(shape, wcs, self.pos - w, corner=True, safe=True),
         enmap.sky2pix(shape, wcs, self.pos + w, corner=True, safe=True)
     ]).astype(int)
     ipos = np.sort(ipos, 0)
     ashape = np.array(shape[-2:])
     mask = np.all(ipos[1] >= 0, 0) & np.all(
         ipos[0] < ashape[:, None], 0) & np.all(
             ipos[1] - ipos[0] < ashape[:, None], 0)
     nmask = np.sum(mask)
     if nmask == 0: return m
     if pad:
         # We will include enough pixels on each side that we avoid
         # truncating any part of the source
         ipos2 = np.array([
             enmap.sky2pix(shape,
                           wcs,
                           self.pos[:, mask] - w * 2,
                           corner=True,
                           safe=True),
             enmap.sky2pix(shape,
                           wcs,
                           self.pos[:, mask] + w * 2,
                           corner=True,
                           safe=True)
         ]).astype(int)
         npad = np.maximum(
             0, [-np.min(ipos2, (0, 2)),
                 np.max(ipos2, (0, 2)) - ashape])
         m, mslice = enmap.pad(m, npad, return_slice=True)
     for i, (pos, amp, width, ibeam) in enumerate(
             zip(self.pos.T[mask], self.amps.T[mask], self.widths.T[mask],
                 self.ibeam.T[mask])):
         # Find necessary bounding box
         sub = m.submap([pos - w, pos + w])
         if sub.size == 0: continue
         add_gauss(sub, pos, amp, ibeam)
     # Optinally apply window function
     if window: m = enmap.apply_window(m)
     if pad: m = m[mslice]
     return m
コード例 #7
0
ファイル: retile.py プロジェクト: cristobal-sifon/enlib
def combine_tiles(ipathfmt,
                  opathfmt,
                  combine=2,
                  downsample=2,
                  itile1=(None, None),
                  itile2=(None, None),
                  tyflip=False,
                  txflip=False,
                  pad_to=None,
                  comm=None,
                  verbose=False):
    """Given a set of tiles on disk at locaiton ipathfmt % {"y":...,"x"...},
	combine them into larger tiles, downsample and write the result to
	opathfmt % {"y":...,"x":...}. x and y must be contiguous and start at 0.
	
	reftile[2] indicates the tile coordinates of the first valid input tile.
	This needs to be specified if not all tiles of the logical tiling are
	physically present.

	tyflip and txflip indicate if the tiles coordinate system is reversed
	relative to the pixel coordinates or not."
	"""
    # Expand combine and downsample to 2d
    combine = np.zeros(2, int) + combine
    downsample = np.zeros(2, int) + downsample
    if pad_to is not None:
        pad_to = np.zeros(2, int) + pad_to
    # Handle optional mpi
    rank, size = (comm.rank, comm.size) if comm is not None else (0, 1)
    # Find the range of input tiles
    itile1, itile2 = find_tile_range(ipathfmt, itile1, itile2)
    # Read the first tile to get its size information
    ibase = enmap.read_map(ipathfmt % {"y": itile1[0], "x": itile1[1]}) * 0
    # Find the set of output tiles we need to consider
    otile1 = itile1 / combine
    otile2 = (itile2 - 1) / combine + 1
    # And loop over them
    oyx = [(oy, ox) for oy in range(otile1[0], otile2[0])
           for ox in range(otile1[1], otile2[1])]
    for i in range(rank, len(oyx), size):
        oy, ox = oyx[i]
        # Read in all associated tiles into a list of lists
        rows = []
        for dy in range(combine[0]):
            iy = oy * combine[0] + dy
            if iy >= itile2[0]: continue
            cols = []
            for dx in range(combine[1]):
                ix = ox * combine[1] + dx
                if ix >= itile2[1]: continue
                if iy < itile1[0] or ix < itile1[1]:
                    # The first tiles are missing on disk, but are
                    # logically a part of the tiling. Use ibase,
                    # which has been zeroed out.
                    cols.append(ibase)
                else:
                    itname = ipathfmt % {"y": iy, "x": ix}
                    cols.append(enmap.read_map(itname))
            if txflip: cols = cols[::-1]
            rows.append(cols)
        # Stack them next to each other into a big tile
        if tyflip: rows = rows[::-1]
        omap = enmap.tile_maps(rows)
        # Downgrade if necessary
        if np.any(downsample > 1):
            omap = enmap.downgrade(omap, downsample)
        if pad_to is not None:
            # Padding happens towards the end of the tiling,
            # which depends on the flip status
            padding = np.array(
                [[0, 0],
                 [pad_to[0] - omap.shape[-2], pad_to[1] - omap.shape[-1]]])
            if tyflip: padding[:, 0] = padding[::-1, 0]
            if txflip: padding[:, 1] = padding[::-1, 1]
            omap = enmap.pad(omap, padding)
        # And output
        otname = opathfmt % {"y": oy, "x": ox}
        utils.mkdir(os.path.dirname(otname))
        enmap.write_map(otname, omap)
        if verbose: print otname