コード例 #1
0
ファイル: train.py プロジェクト: EyreEyre/ML2017-lab-03
def test(X_test, y_test):
    print("Test the AdaBoost Classifier.")
    clf = AdaBoostClassifier.load(adb_model_path)
    pre_y = clf.predict(X_test)
    target_names = ['face', 'non face']
    report = classification_report(y_test, pre_y, target_names=target_names)
    print(report)
    with open(report_path, "w") as f:
        f.write(report)
        f.close()
        print("report has been wrote into %s" % report_path)
コード例 #2
0
ファイル: train.py プロジェクト: SunDoge/ML2017-lab-03
def test_image():
    path = 'datasets/original/'
    face = io.imread_collection(path + 'face/*.jpg')
    nonface = io.imread_collection(path + 'nonface/*.jpg')
    labels = ['face', 'nonface']

    X = []
    y = []

    # face_list = [get_features(i) for i in face]
    # nonface_list = [get_features(i) for i in nonface]
    # face_list = Parallel(n_jobs=4)(delayed(get_features)(i) for i in face)
    # nonface_list = Parallel(n_jobs=4)(
    #     delayed(get_features)(i) for i in nonface)

    # X += face_list
    # y += list(np.zeros(len(face_list), dtype=int))
    # X += nonface_list
    # y += list(np.ones(len(nonface_list), dtype=int))

    # AdaBoostClassifier.save(X, 'X.pkl')
    # AdaBoostClassifier.save(y, 'y.pkl')
    X = AdaBoostClassifier.load('X.pkl')
    y = AdaBoostClassifier.load('y.pkl')

    X_train, X_test, y_train, y_test = train_test_split(
        np.array(X), np.array(y), test_size=0.33, random_state=42)

    print('start training')

    clf = AdaBoostClassifier(n_weakers_limit=50)
    clf.fit(X_train, y_train)
    y_pred = clf.predict(X_test)

    with open('report.txt', 'w') as f:
        print(classification_report(y_test, y_pred, target_names=labels), file=f)
コード例 #3
0
ファイル: train.py プロジェクト: LucasTzz/ML2018-lab-03
    def get_features(path):

        image_paths = [os.path.join(path, f) for f in os.listdir(path)]
        features = []
        # read the images and extract the features
        for image_path in image_paths:
            img = cv2.imread(image_path)
            # convert into gray image
            gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
            img_reshape = cv2.resize(gray_img, (25, 25), interpolation=cv2.INTER_CUBIC)
            image = feature.NPDFeature(img_reshape)
            pre_features = feature.NPDFeature.extract(image)
            AdaBoostClassifier.save(pre_features, "save.p")
            face_feature = AdaBoostClassifier.load("save.p")
            features.append(face_feature)
        return features
コード例 #4
0
ファイル: train.py プロジェクト: delbertbeta/ML2018-lab-03
import numpy as np
import feature
from ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report

import os

if __name__ == "__main__":
    # write your code here
    features = []
    y = np.ones((500, 1))
    y = np.append(y, np.ones((500, 1)) * -1).reshape((-1, 1))
    if os.path.exists('features.dump'):
        features = AdaBoostClassifier.load('features.dump')
    else:
        pathes = np.array(
            list(
                map(lambda s: 'datasets/original/face/' + s,
                    os.listdir('datasets/original/face'))))
        pathes = np.append(
            pathes,
            np.array(
                list(
                    map(lambda s: 'datasets/original/nonface/' + s,
                        os.listdir('datasets/original/nonface')))))
        for index, path in enumerate(pathes):
            with Image.open(path) as image:
                print(index, path)
                image = image.convert('L')
コード例 #5
0
        with open('NPD_feature.pkl', 'wb') as f:
            pickle.dump(NPD_feature_list, f)

        # 将标签保存起来
        data = pd.DataFrame({'label': label})
        data.to_csv('label.csv')

    else:
        print("preprocessing has been performed")


if __name__ == "__main__":
    # 预处理数据
    preprocess_data()
    # 加载数据
    feature = AdaBoostClassifier.load('NPD_feature.pkl')
    label = pd.read_csv('label.csv')['label']
    feature = np.array(feature)
    label = np.array(label)

    # 划分训练集和验证集
    X_train, X_val, y_train, y_val = train_test_split(feature,
                                                      label,
                                                      test_size=0.4,
                                                      random_state=2019,
                                                      shuffle=True)
    print('X_train.shape', X_train.shape)
    print('X_val.shape', X_val.shape)
    print('y_train.shape', y_train.shape)
    print('y_val.shape', y_val.shape)
コード例 #6
0
ファイル: train.py プロジェクト: lizilong008/ML2017-lab-03
        y_val.append(val_list[i][1])
    print("load fea success")

    # #训练
    # print ("train")
    # temp_cls=AdaBoostClassifier(100)
    # begin_time =time.time()#
    # temp_cls.fit(X_train,y_train)
    # end_time =time.time()#
    # total_time=(end_time-begin_time)
    # AdaBoostClassifier.save(temp_cls,"fd.model")
    # print ("total train time"+str(total_time))
    # print ("save trained model success")

    #加载训练好的模型
    temp_cls = AdaBoostClassifier.load("fd.model")
    print(len(temp_cls.classifier_list))
    print(len(temp_cls.alpha))
    #测试
    acc = 0.0
    predict_y = temp_cls.predict_list(X_val)
    report = classification_report(y_val,
                                   predict_y,
                                   labels=None,
                                   target_names=None,
                                   sample_weight=None,
                                   digits=2)
    report_file = open('report.txt', 'w')
    report_list = report_file.write(report)
    report_file.close()
    print("report:" + str(report))
コード例 #7
0
    """
    errorNum = 0
    for i in range(len(y)):
        if y[i] != predictY[i]:
            errorNum += 1
    rate = 1 - errorNum / len(y)
    return rate

def divideData(faceFileName,nonfaceFileName):
	'''
	函数作用:切分数据
	:param faceFileName:人脸特征文件名
	:param nonfaceFileName:非人脸特征文件名
	:return: 训练数据,验证数据,训练标签,验证标签
	'''
    faceImage =AdaBoostClassifier.load(faceFileName)
    nonfaceIamge = AdaBoostClassifier.load(nonfaceFileName)
    faceLen = len(faceImage)
    nonfaceLen = len(nonfaceIamge)
    faceLabel = [1] * faceLen
    nonfaceLabel = [-1] * nonfaceLen
    trainImage = []
    trainImage.extend(nonfaceIamge)
    trainImage.extend(faceImage)
    trainLabel = []
    trainLabel.extend(nonfaceLabel)
    trainLabel.extend(faceLabel)
    X_train, X_test, Y_train, Y_test = train_test_split(trainImage, trainLabel, test_size = 0.33)
    return np.array(X_train), np.array(X_test), np.array(Y_train), np.array(Y_test)

コード例 #8
0
ファイル: train.py プロジェクト: we1m1n/MachineLearning
        train = np.zeros((1000, 165600))
        for i in range(500):
            img = Image.open(faces_path[i])
            img = img.convert('L').resize((24, 24))
            nf = NPDFeature(np.array(img))
            train[i * 2] = nf.extract()

            img = Image.open(nonfaces_path[i])
            img = img.convert('L').resize((24, 24))
            nf = NPDFeature(np.array(img))
            train[i * 2 + 1] = nf.extract()
        AdaBoostClassifier.save(train, 'train.txt')

    try:
        X = AdaBoostClassifier.load("train.txt")
    except IOError:
        Feature_extract()
        X = AdaBoostClassifier.load("train.txt")

    Y = np.zeros((1000, 1))
    for i in range(1000):
        Y[i] = (i + 1) % 2
    Y = np.where(Y > 0, 1, -1)

    X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2)

    booster = AdaBoostClassifier(DecisionTreeClassifier, 15)
    booster.fit(X_train, Y_train)
    predict = booster.predict(X_test)
    wrong_count = 0
コード例 #9
0
ファイル: train.py プロジェクト: sxyzc/ML_2017_Lab3
    #加入label
    face_features = numpy.concatenate([face_features, face_y], axis=1)
    nonface_features = numpy.concatenate([nonface_features, nonface_y], axis=1)

    #将所有数据合并
    features = numpy.row_stack((face_features,nonface_features))

    #写入缓存
    AdaBoostClassifier.save(features,"feature.data")
    return features

if __name__ == "__main__":
    #Data格式为[X:y]
    if os.path.exists('feature.data'): #如果预处理过,直接用load()读取数据
        Data = AdaBoostClassifier.load('feature.data')
    else :
        Data = pre_process()

    #将X_data与y_data分开
    X_data,y_data = Data[:,:-1],Data[:,-1]

    #切分训练集与验证集
    X_train,X_test,y_train,y_test = train_test_split(X_data,y_data,test_size=0.3,random_state=10)

    print(len(y_train),len(y_test))

    #进行AdaBoost训练
    mode = tree.DecisionTreeClassifier(max_depth=1)
    adaboost=AdaBoostClassifier(mode,20)
    adaboost.fit(X_train,y_train)
コード例 #10
0
ファイル: train.py プロジェクト: ax478/ML2017-lab-03
    for i in range(num_nonface_image):
        img = Image.open(nonface_path + '/' + nonface_image[i])
        img = img.convert('L')
        img = img.resize((24, 24), Image.ANTIALIAS)
        img = NPDFeature(np.array(img))
        dataset.append(np.concatenate((img.extract(), np.array([-1]))))

    return dataset


if __name__ == "__main__":
    # write your code here
    #dataset = load_data()
    classifier = AdaBoostClassifier(DecisionTreeClassifier(max_depth=3), 6)
    #classifier.save(dataset,'C:/Users/47864/Desktop/Data/data.txt')
    dataset = classifier.load('C:/Users/47864/Desktop/Data/data.txt')
    dataset = np.array(dataset)
    X = dataset[:, :-1]
    y = dataset[:, -1:]
    X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2)
    #print(len(X),len(X_train))
    #print(X_train[0])

    classifier.fit(X_train, y_train)

    y_pred = classifier.predict(X_val)
    #print(y_pred,y_val)
    accuracy_rate = np.sum(y_pred.T == y_val.T[0]) / float(len(y_pred))
    target_names = ['nonface', 'face']
    print("1")
    print(y_val.T[0])
コード例 #11
0
    validate_set = np.array(validate_set)
    train_img2feature_list = []
    validate_img2feature_list = []

    for i in range(500):
        npdFeature_train = NPDFeature(train_set[i])
        train_img2feature_list.append(npdFeature_train.extract())
        npdFeature_validate = NPDFeature(validate_set[i])
        validate_img2feature_list.append(npdFeature_validate.extract())
    train_img2feature_list = np.array(train_img2feature_list)
    validate_img2feature_list = np.array(validate_img2feature_list)
    AdaBoostClassifier.save(train_img2feature_list, 'train')
    AdaBoostClassifier.save(validate_img2feature_list, 'validate')


if __name__ == '__main__':
    mk_dataset()
    train_set_label = np.append(np.ones(250), (-1) * np.ones(250))
    validate_set_label = np.append(np.ones(250), (-1) * np.ones(250))
    train_img2feature_list = AdaBoostClassifier.load('train')
    validate_img2feature_list = AdaBoostClassifier.load('validate')

    adaboostClassifier = AdaBoostClassifier(DecisionTreeClassifier, 20)
    classifier_list, alpha_list = adaboostClassifier.fit(
        train_img2feature_list, train_set_label)
    result_predict = adaboostClassifier.predict(validate_img2feature_list,
                                                classifier_list, alpha_list, 0)

    f = open('report.txt', 'w')
    f.write(classification_report(validate_set_label, result_predict))