imageData = np.array(image) npd = feature.NPDFeature(imageData) features.append(npd.extract()) AdaBoostClassifier.save(features, 'features.dump') features = np.array(features) print(features.shape) X_train, X_val, y_train, y_val = train_test_split(features, y, test_size=0.25) classifier = AdaBoostClassifier(DecisionTreeClassifier, 5) classifier.fit(X_train, y_train) score = classifier.predict_scores(X_val, y_val) predict = classifier.predict(X_val) y_val = np.array(list(map(lambda x: int(x), y_val.reshape(1, -1)[0]))) predict = np.array(list(map(lambda x: int(x), predict.reshape(1, -1)[0]))) print(predict) print(y_val) reportContent = 'score = ' + str(score) + '\n' reportContent += classification_report(y_val, predict) with open('classifier_report.txt', 'w') as report: report.write(reportContent) pass
load_img() npd_feature() img_features = np.array(img_features) img_labels = np.array(img_labels).reshape((-1, 1)) print(img_features.shape) print(img_features) X_train, X_val, y_train, y_val = train_test_split(img_features, img_labels, test_size=0.25) print(X_train.shape, X_val.shape, y_train.shape, y_val.shape) ada = AdaBoostClassifier(DecisionTreeClassifier, WEAKERS_LIMIT) ada.fit(X_train, y_train) y_predict = ada.predict(X_val) acc = ada.predict_scores(X_val, y_val) print(acc) y_val = np.array(list(map(lambda x: int(x), y_val.reshape(1, -1)[0]))) y_predict = np.array( list(map(lambda x: int(x), y_predict.reshape(1, -1)[0]))) print(y_predict) print(y_val) reportContent = 'Accuracy = ' + str(acc) + '\n' reportContent += classification_report(y_val, y_predict) with open('report.txt', 'w') as report: