def test_get_last_component(example_graph): component_graph = ComponentGraph() with pytest.raises(ValueError, match='Cannot get last component from edgeless graph'): component_graph.get_last_component() component_graph = ComponentGraph(example_graph) assert component_graph.get_last_component() == LogisticRegressionClassifier component_graph.instantiate({}) assert component_graph.get_last_component( ) == LogisticRegressionClassifier() component_graph = ComponentGraph({'Imputer': [Imputer]}) assert component_graph.get_last_component() == Imputer component_graph = ComponentGraph({ 'Imputer': [Imputer], 'OneHot': [OneHotEncoder, 'Imputer'] }) assert component_graph.get_last_component() == OneHotEncoder component_graph = ComponentGraph({ 'Imputer': [Imputer], 'OneHot': [OneHotEncoder] }) with pytest.raises(ValueError, match='Cannot get last component from edgeless graph'): component_graph.get_last_component()
def test_generate_code(): expected_code = "from evalml.pipelines.components.estimators.classifiers.logistic_regression import LogisticRegressionClassifier" \ "\n\nlogisticRegressionClassifier = LogisticRegressionClassifier(**{'penalty': 'l2', 'C': 1.0, 'n_jobs': -1, 'multi_class': 'auto', 'solver': 'lbfgs'})" component_code = generate_component_code(LogisticRegressionClassifier()) assert component_code == expected_code expected_code = "from evalml.pipelines.components.estimators.regressors.et_regressor import ExtraTreesRegressor" \ "\n\nextraTreesRegressor = ExtraTreesRegressor(**{'n_estimators': 50, 'max_features': 'auto', 'max_depth': 6, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_jobs': -1})" component_code = generate_component_code(ExtraTreesRegressor(n_estimators=50)) assert component_code == expected_code expected_code = "from evalml.pipelines.components.transformers.imputers.imputer import Imputer" \ "\n\nimputer = Imputer(**{'categorical_impute_strategy': 'most_frequent', 'numeric_impute_strategy': 'mean', 'categorical_fill_value': None, 'numeric_fill_value': None})" component_code = generate_component_code(Imputer()) assert component_code == expected_code
def test_get_estimators(example_graph): component_graph = ComponentGraph(example_graph) with pytest.raises(ValueError, match='Cannot get estimators until'): component_graph.get_estimators() component_graph.instantiate({}) assert component_graph.get_estimators() == [ RandomForestClassifier(), ElasticNetClassifier(), LogisticRegressionClassifier() ] component_graph = ComponentGraph.from_list(['Imputer', 'One Hot Encoder']) component_graph.instantiate({}) assert component_graph.get_estimators() == []
def test_serialization_protocol(mock_cloudpickle_dump, tmpdir): path = os.path.join(str(tmpdir), 'pipe.pkl') component = LogisticRegressionClassifier() component.save(path) assert len(mock_cloudpickle_dump.call_args_list) == 1 assert mock_cloudpickle_dump.call_args_list[0][1]['protocol'] == cloudpickle.DEFAULT_PROTOCOL mock_cloudpickle_dump.reset_mock() component.save(path, pickle_protocol=42) assert len(mock_cloudpickle_dump.call_args_list) == 1 assert mock_cloudpickle_dump.call_args_list[0][1]['protocol'] == 42
def test_iteration(example_graph): component_graph = ComponentGraph(example_graph) expected = [ Imputer, OneHotEncoder, ElasticNetClassifier, OneHotEncoder, RandomForestClassifier, LogisticRegressionClassifier ] iteration = [component for component in component_graph] assert iteration == expected component_graph.instantiate({'OneHot_RandomForest': {'top_n': 32}}) expected = [ Imputer(), OneHotEncoder(), ElasticNetClassifier(), OneHotEncoder(top_n=32), RandomForestClassifier(), LogisticRegressionClassifier() ] iteration = [component for component in component_graph] assert iteration == expected
def test_generate_code_pipeline_errors(): class MockBinaryPipeline(BinaryClassificationPipeline): name = "Mock Binary Pipeline" component_graph = ['Imputer', 'Random Forest Classifier'] class MockMulticlassPipeline(MulticlassClassificationPipeline): name = "Mock Multiclass Pipeline" component_graph = ['Imputer', 'Random Forest Classifier'] class MockRegressionPipeline(RegressionPipeline): name = "Mock Regression Pipeline" component_graph = ['Imputer', 'Random Forest Regressor'] with pytest.raises(ValueError, match="Element must be a pipeline instance"): generate_pipeline_code(MockBinaryPipeline) with pytest.raises(ValueError, match="Element must be a pipeline instance"): generate_pipeline_code(MockMulticlassPipeline) with pytest.raises(ValueError, match="Element must be a pipeline instance"): generate_pipeline_code(MockRegressionPipeline) with pytest.raises(ValueError, match="Element must be a pipeline instance"): generate_pipeline_code([Imputer]) with pytest.raises(ValueError, match="Element must be a pipeline instance"): generate_pipeline_code([Imputer, LogisticRegressionClassifier]) with pytest.raises(ValueError, match="Element must be a pipeline instance"): generate_pipeline_code([Imputer(), LogisticRegressionClassifier()])
def test_describe_component(): enc = OneHotEncoder() imputer = Imputer() simple_imputer = SimpleImputer("mean") column_imputer = PerColumnImputer({"a": "mean", "b": ("constant", 100)}) scaler = StandardScaler() feature_selection_clf = RFClassifierSelectFromModel(n_estimators=10, number_features=5, percent_features=0.3, threshold=-np.inf) feature_selection_reg = RFRegressorSelectFromModel(n_estimators=10, number_features=5, percent_features=0.3, threshold=-np.inf) drop_col_transformer = DropColumns(columns=['col_one', 'col_two']) drop_null_transformer = DropNullColumns() datetime = DateTimeFeaturizer() text_featurizer = TextFeaturizer() lsa = LSA() pca = PCA() lda = LinearDiscriminantAnalysis() ft = DFSTransformer() us = Undersampler() assert enc.describe(return_dict=True) == {'name': 'One Hot Encoder', 'parameters': {'top_n': 10, 'features_to_encode': None, 'categories': None, 'drop': 'if_binary', 'handle_unknown': 'ignore', 'handle_missing': 'error'}} assert imputer.describe(return_dict=True) == {'name': 'Imputer', 'parameters': {'categorical_impute_strategy': "most_frequent", 'categorical_fill_value': None, 'numeric_impute_strategy': "mean", 'numeric_fill_value': None}} assert simple_imputer.describe(return_dict=True) == {'name': 'Simple Imputer', 'parameters': {'impute_strategy': 'mean', 'fill_value': None}} assert column_imputer.describe(return_dict=True) == {'name': 'Per Column Imputer', 'parameters': {'impute_strategies': {'a': 'mean', 'b': ('constant', 100)}, 'default_impute_strategy': 'most_frequent'}} assert scaler.describe(return_dict=True) == {'name': 'Standard Scaler', 'parameters': {}} assert feature_selection_clf.describe(return_dict=True) == {'name': 'RF Classifier Select From Model', 'parameters': {'number_features': 5, 'n_estimators': 10, 'max_depth': None, 'percent_features': 0.3, 'threshold': -np.inf, 'n_jobs': -1}} assert feature_selection_reg.describe(return_dict=True) == {'name': 'RF Regressor Select From Model', 'parameters': {'number_features': 5, 'n_estimators': 10, 'max_depth': None, 'percent_features': 0.3, 'threshold': -np.inf, 'n_jobs': -1}} assert drop_col_transformer.describe(return_dict=True) == {'name': 'Drop Columns Transformer', 'parameters': {'columns': ['col_one', 'col_two']}} assert drop_null_transformer.describe(return_dict=True) == {'name': 'Drop Null Columns Transformer', 'parameters': {'pct_null_threshold': 1.0}} assert datetime.describe(return_dict=True) == {'name': 'DateTime Featurization Component', 'parameters': {'features_to_extract': ['year', 'month', 'day_of_week', 'hour'], 'encode_as_categories': False}} assert text_featurizer.describe(return_dict=True) == {'name': 'Text Featurization Component', 'parameters': {}} assert lsa.describe(return_dict=True) == {'name': 'LSA Transformer', 'parameters': {}} assert pca.describe(return_dict=True) == {'name': 'PCA Transformer', 'parameters': {'n_components': None, 'variance': 0.95}} assert lda.describe(return_dict=True) == {'name': 'Linear Discriminant Analysis Transformer', 'parameters': {'n_components': None}} assert ft.describe(return_dict=True) == {'name': 'DFS Transformer', 'parameters': {"index": "index"}} assert us.describe(return_dict=True) == {'name': 'Undersampler', 'parameters': {"balanced_ratio": 4, "min_samples": 100, "min_percentage": 0.1}} # testing estimators base_classifier = BaselineClassifier() base_regressor = BaselineRegressor() lr_classifier = LogisticRegressionClassifier() en_classifier = ElasticNetClassifier() en_regressor = ElasticNetRegressor() et_classifier = ExtraTreesClassifier(n_estimators=10, max_features="auto") et_regressor = ExtraTreesRegressor(n_estimators=10, max_features="auto") rf_classifier = RandomForestClassifier(n_estimators=10, max_depth=3) rf_regressor = RandomForestRegressor(n_estimators=10, max_depth=3) linear_regressor = LinearRegressor() svm_classifier = SVMClassifier() svm_regressor = SVMRegressor() assert base_classifier.describe(return_dict=True) == {'name': 'Baseline Classifier', 'parameters': {'strategy': 'mode'}} assert base_regressor.describe(return_dict=True) == {'name': 'Baseline Regressor', 'parameters': {'strategy': 'mean'}} assert lr_classifier.describe(return_dict=True) == {'name': 'Logistic Regression Classifier', 'parameters': {'penalty': 'l2', 'C': 1.0, 'n_jobs': -1, 'multi_class': 'auto', 'solver': 'lbfgs'}} assert en_classifier.describe(return_dict=True) == {'name': 'Elastic Net Classifier', 'parameters': {'alpha': 0.5, 'l1_ratio': 0.5, 'n_jobs': -1, 'max_iter': 1000, "loss": 'log', 'penalty': 'elasticnet'}} assert en_regressor.describe(return_dict=True) == {'name': 'Elastic Net Regressor', 'parameters': {'alpha': 0.5, 'l1_ratio': 0.5, 'max_iter': 1000, 'normalize': False}} assert et_classifier.describe(return_dict=True) == {'name': 'Extra Trees Classifier', 'parameters': {'n_estimators': 10, 'max_features': 'auto', 'max_depth': 6, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_jobs': -1}} assert et_regressor.describe(return_dict=True) == {'name': 'Extra Trees Regressor', 'parameters': {'n_estimators': 10, 'max_features': 'auto', 'max_depth': 6, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_jobs': -1}} assert rf_classifier.describe(return_dict=True) == {'name': 'Random Forest Classifier', 'parameters': {'n_estimators': 10, 'max_depth': 3, 'n_jobs': -1}} assert rf_regressor.describe(return_dict=True) == {'name': 'Random Forest Regressor', 'parameters': {'n_estimators': 10, 'max_depth': 3, 'n_jobs': -1}} assert linear_regressor.describe(return_dict=True) == {'name': 'Linear Regressor', 'parameters': {'fit_intercept': True, 'normalize': False, 'n_jobs': -1}} assert svm_classifier.describe(return_dict=True) == {'name': 'SVM Classifier', 'parameters': {'C': 1.0, 'kernel': 'rbf', 'gamma': 'scale', 'probability': True}} assert svm_regressor.describe(return_dict=True) == {'name': 'SVM Regressor', 'parameters': {'C': 1.0, 'kernel': 'rbf', 'gamma': 'scale'}} try: xgb_classifier = XGBoostClassifier(eta=0.1, min_child_weight=1, max_depth=3, n_estimators=75) xgb_regressor = XGBoostRegressor(eta=0.1, min_child_weight=1, max_depth=3, n_estimators=75) assert xgb_classifier.describe(return_dict=True) == {'name': 'XGBoost Classifier', 'parameters': {'eta': 0.1, 'max_depth': 3, 'min_child_weight': 1, 'n_estimators': 75}} assert xgb_regressor.describe(return_dict=True) == {'name': 'XGBoost Regressor', 'parameters': {'eta': 0.1, 'max_depth': 3, 'min_child_weight': 1, 'n_estimators': 75}} except ImportError: pass try: cb_classifier = CatBoostClassifier() cb_regressor = CatBoostRegressor() assert cb_classifier.describe(return_dict=True) == {'name': 'CatBoost Classifier', 'parameters': {'allow_writing_files': False, 'n_estimators': 10, 'eta': 0.03, 'max_depth': 6, 'bootstrap_type': None, 'silent': True}} assert cb_regressor.describe(return_dict=True) == {'name': 'CatBoost Regressor', 'parameters': {'allow_writing_files': False, 'n_estimators': 10, 'eta': 0.03, 'max_depth': 6, 'bootstrap_type': None, 'silent': False}} except ImportError: pass try: lg_classifier = LightGBMClassifier() lg_regressor = LightGBMRegressor() assert lg_classifier.describe(return_dict=True) == {'name': 'LightGBM Classifier', 'parameters': {'boosting_type': 'gbdt', 'learning_rate': 0.1, 'n_estimators': 100, 'max_depth': 0, 'num_leaves': 31, 'min_child_samples': 20, 'n_jobs': -1, 'bagging_fraction': 0.9, 'bagging_freq': 0}} assert lg_regressor.describe(return_dict=True) == {'name': 'LightGBM Regressor', 'parameters': {'boosting_type': 'gbdt', 'learning_rate': 0.1, 'n_estimators': 20, 'max_depth': 0, 'num_leaves': 31, 'min_child_samples': 20, 'n_jobs': -1, 'bagging_fraction': 0.9, 'bagging_freq': 0}} except ImportError: pass
def logit_estimator(): est_class = LogisticRegressionClassifier() return est_class