Exemplo n.º 1
0
def test_get_last_component(example_graph):
    component_graph = ComponentGraph()
    with pytest.raises(ValueError,
                       match='Cannot get last component from edgeless graph'):
        component_graph.get_last_component()

    component_graph = ComponentGraph(example_graph)
    assert component_graph.get_last_component() == LogisticRegressionClassifier

    component_graph.instantiate({})
    assert component_graph.get_last_component(
    ) == LogisticRegressionClassifier()

    component_graph = ComponentGraph({'Imputer': [Imputer]})
    assert component_graph.get_last_component() == Imputer

    component_graph = ComponentGraph({
        'Imputer': [Imputer],
        'OneHot': [OneHotEncoder, 'Imputer']
    })
    assert component_graph.get_last_component() == OneHotEncoder

    component_graph = ComponentGraph({
        'Imputer': [Imputer],
        'OneHot': [OneHotEncoder]
    })
    with pytest.raises(ValueError,
                       match='Cannot get last component from edgeless graph'):
        component_graph.get_last_component()
Exemplo n.º 2
0
def test_generate_code():
    expected_code = "from evalml.pipelines.components.estimators.classifiers.logistic_regression import LogisticRegressionClassifier" \
                    "\n\nlogisticRegressionClassifier = LogisticRegressionClassifier(**{'penalty': 'l2', 'C': 1.0, 'n_jobs': -1, 'multi_class': 'auto', 'solver': 'lbfgs'})"
    component_code = generate_component_code(LogisticRegressionClassifier())
    assert component_code == expected_code

    expected_code = "from evalml.pipelines.components.estimators.regressors.et_regressor import ExtraTreesRegressor" \
                    "\n\nextraTreesRegressor = ExtraTreesRegressor(**{'n_estimators': 50, 'max_features': 'auto', 'max_depth': 6, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_jobs': -1})"
    component_code = generate_component_code(ExtraTreesRegressor(n_estimators=50))
    assert component_code == expected_code

    expected_code = "from evalml.pipelines.components.transformers.imputers.imputer import Imputer" \
                    "\n\nimputer = Imputer(**{'categorical_impute_strategy': 'most_frequent', 'numeric_impute_strategy': 'mean', 'categorical_fill_value': None, 'numeric_fill_value': None})"
    component_code = generate_component_code(Imputer())
    assert component_code == expected_code
Exemplo n.º 3
0
def test_get_estimators(example_graph):
    component_graph = ComponentGraph(example_graph)
    with pytest.raises(ValueError, match='Cannot get estimators until'):
        component_graph.get_estimators()

    component_graph.instantiate({})
    assert component_graph.get_estimators() == [
        RandomForestClassifier(),
        ElasticNetClassifier(),
        LogisticRegressionClassifier()
    ]

    component_graph = ComponentGraph.from_list(['Imputer', 'One Hot Encoder'])
    component_graph.instantiate({})
    assert component_graph.get_estimators() == []
Exemplo n.º 4
0
def test_serialization_protocol(mock_cloudpickle_dump, tmpdir):
    path = os.path.join(str(tmpdir), 'pipe.pkl')
    component = LogisticRegressionClassifier()

    component.save(path)
    assert len(mock_cloudpickle_dump.call_args_list) == 1
    assert mock_cloudpickle_dump.call_args_list[0][1]['protocol'] == cloudpickle.DEFAULT_PROTOCOL

    mock_cloudpickle_dump.reset_mock()

    component.save(path, pickle_protocol=42)
    assert len(mock_cloudpickle_dump.call_args_list) == 1
    assert mock_cloudpickle_dump.call_args_list[0][1]['protocol'] == 42
Exemplo n.º 5
0
def test_iteration(example_graph):
    component_graph = ComponentGraph(example_graph)

    expected = [
        Imputer, OneHotEncoder, ElasticNetClassifier, OneHotEncoder,
        RandomForestClassifier, LogisticRegressionClassifier
    ]
    iteration = [component for component in component_graph]
    assert iteration == expected

    component_graph.instantiate({'OneHot_RandomForest': {'top_n': 32}})
    expected = [
        Imputer(),
        OneHotEncoder(),
        ElasticNetClassifier(),
        OneHotEncoder(top_n=32),
        RandomForestClassifier(),
        LogisticRegressionClassifier()
    ]
    iteration = [component for component in component_graph]
    assert iteration == expected
Exemplo n.º 6
0
def test_generate_code_pipeline_errors():
    class MockBinaryPipeline(BinaryClassificationPipeline):
        name = "Mock Binary Pipeline"
        component_graph = ['Imputer', 'Random Forest Classifier']

    class MockMulticlassPipeline(MulticlassClassificationPipeline):
        name = "Mock Multiclass Pipeline"
        component_graph = ['Imputer', 'Random Forest Classifier']

    class MockRegressionPipeline(RegressionPipeline):
        name = "Mock Regression Pipeline"
        component_graph = ['Imputer', 'Random Forest Regressor']

    with pytest.raises(ValueError,
                       match="Element must be a pipeline instance"):
        generate_pipeline_code(MockBinaryPipeline)

    with pytest.raises(ValueError,
                       match="Element must be a pipeline instance"):
        generate_pipeline_code(MockMulticlassPipeline)

    with pytest.raises(ValueError,
                       match="Element must be a pipeline instance"):
        generate_pipeline_code(MockRegressionPipeline)

    with pytest.raises(ValueError,
                       match="Element must be a pipeline instance"):
        generate_pipeline_code([Imputer])

    with pytest.raises(ValueError,
                       match="Element must be a pipeline instance"):
        generate_pipeline_code([Imputer, LogisticRegressionClassifier])

    with pytest.raises(ValueError,
                       match="Element must be a pipeline instance"):
        generate_pipeline_code([Imputer(), LogisticRegressionClassifier()])
Exemplo n.º 7
0
def test_describe_component():
    enc = OneHotEncoder()
    imputer = Imputer()
    simple_imputer = SimpleImputer("mean")
    column_imputer = PerColumnImputer({"a": "mean", "b": ("constant", 100)})
    scaler = StandardScaler()
    feature_selection_clf = RFClassifierSelectFromModel(n_estimators=10, number_features=5, percent_features=0.3, threshold=-np.inf)
    feature_selection_reg = RFRegressorSelectFromModel(n_estimators=10, number_features=5, percent_features=0.3, threshold=-np.inf)
    drop_col_transformer = DropColumns(columns=['col_one', 'col_two'])
    drop_null_transformer = DropNullColumns()
    datetime = DateTimeFeaturizer()
    text_featurizer = TextFeaturizer()
    lsa = LSA()
    pca = PCA()
    lda = LinearDiscriminantAnalysis()
    ft = DFSTransformer()
    us = Undersampler()
    assert enc.describe(return_dict=True) == {'name': 'One Hot Encoder', 'parameters': {'top_n': 10,
                                                                                        'features_to_encode': None,
                                                                                        'categories': None,
                                                                                        'drop': 'if_binary',
                                                                                        'handle_unknown': 'ignore',
                                                                                        'handle_missing': 'error'}}
    assert imputer.describe(return_dict=True) == {'name': 'Imputer', 'parameters': {'categorical_impute_strategy': "most_frequent",
                                                                                    'categorical_fill_value': None,
                                                                                    'numeric_impute_strategy': "mean",
                                                                                    'numeric_fill_value': None}}
    assert simple_imputer.describe(return_dict=True) == {'name': 'Simple Imputer', 'parameters': {'impute_strategy': 'mean', 'fill_value': None}}
    assert column_imputer.describe(return_dict=True) == {'name': 'Per Column Imputer', 'parameters': {'impute_strategies': {'a': 'mean', 'b': ('constant', 100)}, 'default_impute_strategy': 'most_frequent'}}
    assert scaler.describe(return_dict=True) == {'name': 'Standard Scaler', 'parameters': {}}
    assert feature_selection_clf.describe(return_dict=True) == {'name': 'RF Classifier Select From Model', 'parameters': {'number_features': 5, 'n_estimators': 10, 'max_depth': None, 'percent_features': 0.3, 'threshold': -np.inf, 'n_jobs': -1}}
    assert feature_selection_reg.describe(return_dict=True) == {'name': 'RF Regressor Select From Model', 'parameters': {'number_features': 5, 'n_estimators': 10, 'max_depth': None, 'percent_features': 0.3, 'threshold': -np.inf, 'n_jobs': -1}}
    assert drop_col_transformer.describe(return_dict=True) == {'name': 'Drop Columns Transformer', 'parameters': {'columns': ['col_one', 'col_two']}}
    assert drop_null_transformer.describe(return_dict=True) == {'name': 'Drop Null Columns Transformer', 'parameters': {'pct_null_threshold': 1.0}}
    assert datetime.describe(return_dict=True) == {'name': 'DateTime Featurization Component',
                                                   'parameters': {'features_to_extract': ['year', 'month', 'day_of_week', 'hour'],
                                                                  'encode_as_categories': False}}
    assert text_featurizer.describe(return_dict=True) == {'name': 'Text Featurization Component', 'parameters': {}}
    assert lsa.describe(return_dict=True) == {'name': 'LSA Transformer', 'parameters': {}}
    assert pca.describe(return_dict=True) == {'name': 'PCA Transformer', 'parameters': {'n_components': None, 'variance': 0.95}}
    assert lda.describe(return_dict=True) == {'name': 'Linear Discriminant Analysis Transformer', 'parameters': {'n_components': None}}
    assert ft.describe(return_dict=True) == {'name': 'DFS Transformer', 'parameters': {"index": "index"}}
    assert us.describe(return_dict=True) == {'name': 'Undersampler', 'parameters': {"balanced_ratio": 4, "min_samples": 100, "min_percentage": 0.1}}
    # testing estimators
    base_classifier = BaselineClassifier()
    base_regressor = BaselineRegressor()
    lr_classifier = LogisticRegressionClassifier()
    en_classifier = ElasticNetClassifier()
    en_regressor = ElasticNetRegressor()
    et_classifier = ExtraTreesClassifier(n_estimators=10, max_features="auto")
    et_regressor = ExtraTreesRegressor(n_estimators=10, max_features="auto")
    rf_classifier = RandomForestClassifier(n_estimators=10, max_depth=3)
    rf_regressor = RandomForestRegressor(n_estimators=10, max_depth=3)
    linear_regressor = LinearRegressor()
    svm_classifier = SVMClassifier()
    svm_regressor = SVMRegressor()
    assert base_classifier.describe(return_dict=True) == {'name': 'Baseline Classifier', 'parameters': {'strategy': 'mode'}}
    assert base_regressor.describe(return_dict=True) == {'name': 'Baseline Regressor', 'parameters': {'strategy': 'mean'}}
    assert lr_classifier.describe(return_dict=True) == {'name': 'Logistic Regression Classifier', 'parameters': {'penalty': 'l2', 'C': 1.0, 'n_jobs': -1, 'multi_class': 'auto', 'solver': 'lbfgs'}}
    assert en_classifier.describe(return_dict=True) == {'name': 'Elastic Net Classifier', 'parameters': {'alpha': 0.5, 'l1_ratio': 0.5, 'n_jobs': -1, 'max_iter': 1000, "loss": 'log', 'penalty': 'elasticnet'}}
    assert en_regressor.describe(return_dict=True) == {'name': 'Elastic Net Regressor', 'parameters': {'alpha': 0.5, 'l1_ratio': 0.5, 'max_iter': 1000, 'normalize': False}}
    assert et_classifier.describe(return_dict=True) == {'name': 'Extra Trees Classifier', 'parameters': {'n_estimators': 10, 'max_features': 'auto', 'max_depth': 6, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_jobs': -1}}
    assert et_regressor.describe(return_dict=True) == {'name': 'Extra Trees Regressor', 'parameters': {'n_estimators': 10, 'max_features': 'auto', 'max_depth': 6, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_jobs': -1}}
    assert rf_classifier.describe(return_dict=True) == {'name': 'Random Forest Classifier', 'parameters': {'n_estimators': 10, 'max_depth': 3, 'n_jobs': -1}}
    assert rf_regressor.describe(return_dict=True) == {'name': 'Random Forest Regressor', 'parameters': {'n_estimators': 10, 'max_depth': 3, 'n_jobs': -1}}
    assert linear_regressor.describe(return_dict=True) == {'name': 'Linear Regressor', 'parameters': {'fit_intercept': True, 'normalize': False, 'n_jobs': -1}}
    assert svm_classifier.describe(return_dict=True) == {'name': 'SVM Classifier', 'parameters': {'C': 1.0, 'kernel': 'rbf', 'gamma': 'scale', 'probability': True}}
    assert svm_regressor.describe(return_dict=True) == {'name': 'SVM Regressor', 'parameters': {'C': 1.0, 'kernel': 'rbf', 'gamma': 'scale'}}
    try:
        xgb_classifier = XGBoostClassifier(eta=0.1, min_child_weight=1, max_depth=3, n_estimators=75)
        xgb_regressor = XGBoostRegressor(eta=0.1, min_child_weight=1, max_depth=3, n_estimators=75)
        assert xgb_classifier.describe(return_dict=True) == {'name': 'XGBoost Classifier', 'parameters': {'eta': 0.1, 'max_depth': 3, 'min_child_weight': 1, 'n_estimators': 75}}
        assert xgb_regressor.describe(return_dict=True) == {'name': 'XGBoost Regressor', 'parameters': {'eta': 0.1, 'max_depth': 3, 'min_child_weight': 1, 'n_estimators': 75}}
    except ImportError:
        pass
    try:
        cb_classifier = CatBoostClassifier()
        cb_regressor = CatBoostRegressor()
        assert cb_classifier.describe(return_dict=True) == {'name': 'CatBoost Classifier', 'parameters': {'allow_writing_files': False, 'n_estimators': 10, 'eta': 0.03, 'max_depth': 6, 'bootstrap_type': None, 'silent': True}}
        assert cb_regressor.describe(return_dict=True) == {'name': 'CatBoost Regressor', 'parameters': {'allow_writing_files': False, 'n_estimators': 10, 'eta': 0.03, 'max_depth': 6, 'bootstrap_type': None, 'silent': False}}
    except ImportError:
        pass
    try:
        lg_classifier = LightGBMClassifier()
        lg_regressor = LightGBMRegressor()
        assert lg_classifier.describe(return_dict=True) == {'name': 'LightGBM Classifier', 'parameters': {'boosting_type': 'gbdt', 'learning_rate': 0.1, 'n_estimators': 100, 'max_depth': 0, 'num_leaves': 31,
                                                                                                          'min_child_samples': 20, 'n_jobs': -1, 'bagging_fraction': 0.9, 'bagging_freq': 0}}
        assert lg_regressor.describe(return_dict=True) == {'name': 'LightGBM Regressor', 'parameters': {'boosting_type': 'gbdt', 'learning_rate': 0.1, 'n_estimators': 20, 'max_depth': 0, 'num_leaves': 31,
                                                                                                        'min_child_samples': 20, 'n_jobs': -1, 'bagging_fraction': 0.9, 'bagging_freq': 0}}
    except ImportError:
        pass
Exemplo n.º 8
0
def logit_estimator():
    est_class = LogisticRegressionClassifier()
    return est_class