コード例 #1
0
def test_expert_finder_topic_modeling():
    alpha = np.ones(k)
    beta = np.ones(a)
    gamma = np.ones((k, v))
    omega = np.ones((k, p))
    toy_expert_finder = ef.ExpertFinder(
        K=k,
        docs_meta=docs,
        P=p,
        A=a,
        V=v,
        alpha=alpha,
        beta=beta,
        gamma=gamma,
        omega=omega,
        )
    ef.expert_finding_learning(toy_expert_finder, 3000)
コード例 #2
0
def test_expert_finder_hierarchy_rocks():
    alpha = np.ones(k) #may try different topic distribution
    beta = np.ones(a) #authors - uniform
    gamma = np.ones((k,v))
    back_phrase_prob = 1.0 / p
    background_topic_dist = [back_phrase_prob] * p
    fpm_topic_dist = generate_phrase_topic_dist(PHRASE_DIST_PATH + 'frequent_pattern_mining', 27451, 0.4)
    ds_topic_dist = generate_phrase_topic_dist(PHRASE_DIST_PATH + 'data_stream', 27451, 0.4)
    phrase_dist = [background_topic_dist, fpm_topic_dist, ds_topic_dist]
    toy_expert_finder = ef.ExpertFinder(
        K=k,
        docs_meta=docs,
        P=p,
        A=a,
        V=v,
        alpha=alpha,
        beta=beta,
        gamma=gamma,
        dist_phrase=phrase_dist,
        )
    ef.expert_finding_learning(toy_expert_finder, 3000)
コード例 #3
0
def test_expert_finder_hits():
    alpha = np.ones(k) #may try different topic distribution
    beta = np.ones(a) #authors - uniform
    gamma = np.array([[1,1,1,1,1,1,1,1,1,1],
                      [1,100,50,30,1,1,1,1,1,1],
                      [1,1,1,1,1,1,100,70,1,1]])
    back_phrase_prob = 1.0 / p
    background_topic_dist = [back_phrase_prob] * p
    fpm_topic_dist = generate_phrase_topic_dist(PHRASE_DIST_PATH + 'frequent_pattern_mining', 27451, 0.4)
    ds_topic_dist = generate_phrase_topic_dist(PHRASE_DIST_PATH + 'data_stream', 27451, 0.4)
    phrase_dist = [background_topic_dist, fpm_topic_dist, ds_topic_dist]

    toy_expert_finder = ef.ExpertFinder(
        K=k,
        docs_meta=docs,
        P=p,
        A=a,
        V=v,
        alpha=alpha,
        beta=beta,
        gamma=gamma,
        dist_phrase=phrase_dist,
        )
    ef.expert_finding_learning(toy_expert_finder, 200)

    toy_hin = build_hin.HIN(docs_meta=docs)
    toy_hits_1 = hits.HITS(toy_expert_finder, 1, toy_hin)
    #toy_hits_2 = bibrank.HITS(toy_expert_finder, 2, toy_hin)
    hits.propagate_with_hits(toy_hits_1, 300)
    #bibrank.propagate_with_hits(toy_hits_2, 300)
    print "auth papers"
    print toy_hits_1.auth_papers
    print "hub papers"
    print toy_hits_1.hub_papers
    print "auth authors"
    print toy_hits_1.auth_authors
    print "auth venues"
    print toy_hits_1.auth_venues