def dataloaders(self, bs=64, val_bs=None, shuffle_train=True, n=None, path='.', dl_type=None, dl_kwargs=None, device=None, **kwargs): if device is None: device = default_device() if dl_kwargs is None: dl_kwargs = [{}] * self.n_subsets if dl_type is None: dl_type = self._dl_type drop_last = kwargs.pop('drop_last', shuffle_train) dl = dl_type(self.subset(0), bs=bs, shuffle=shuffle_train, drop_last=drop_last, n=n, device=device, **merge(kwargs, dl_kwargs[0])) dls = [dl] + [ dl.new(self.subset(i), bs=(bs if val_bs is None else val_bs), shuffle=False, drop_last=False, n=None, **dl_kwargs[i]) for i in range(1, self.n_subsets) ] return self._dbunch_type(*dls, path=path, device=device)
def to_device(b, device=None): "Recursively put `b` on `device`." if defaults.use_cuda == False: device = 'cpu' elif device is None: device = default_device() def _inner(o): return o.to(device, non_blocking=True) if isinstance( o, Tensor) else o.to_device(device) if hasattr(o, "to_device") else o return apply(_inner, b)
def sanity_check(self: Learner, show_table=False): "Performs a short epoch and uses all the callbacks in `self.cbs` on the CPU to ensure nothing is broken" device = getattr(self.dls, 'device', default_device()) if hasattr(self.dls, 'device'): self.dls.device = 'cpu' else: # Using raw torch self.model.to('cpu') self.save('tmp') cbs = [ShortEpochCallback(short_valid=False)] if show_table: with self.no_bar(), self.no_logging(): self.fit(1, cbs=cbs) else: self.fit(1, cbs=cbs) if hasattr(self.dls, 'device'): self.dls.device = device else: self.model.to(device) self.load('tmp')
def _fit(self, X, y, X_val=None, y_val=None, time_limit=None, num_cpus=None, num_gpus=0, sample_weight=None, **kwargs): try_import_fastai() from fastai.tabular.model import tabular_config from fastai.tabular.learner import tabular_learner from fastai import torch_core from .callbacks import AgSaveModelCallback, EarlyStoppingCallbackWithTimeLimit from .quantile_helpers import HuberPinballLoss start_time = time.time() if sample_weight is not None: # TODO: support logger.log( 15, "sample_weight not yet supported for NNFastAiTabularModel, this model will ignore them in training." ) params = self._get_model_params() self.y_scaler = params.get('y_scaler', None) if self.y_scaler is None: if self.problem_type == REGRESSION: self.y_scaler = sklearn.preprocessing.StandardScaler() elif self.problem_type == QUANTILE: self.y_scaler = sklearn.preprocessing.MinMaxScaler() else: self.y_scaler = copy.deepcopy(self.y_scaler) if num_gpus is not None: # TODO: Control CPU vs GPU usage during inference if num_gpus == 0: torch_core.default_device(use_cuda=False) else: # TODO: respect CUDA_VISIBLE_DEVICES to select proper GPU torch_core.default_device(use_cuda=True) logger.log(15, f'Fitting Neural Network with parameters {params}...') data = self._preprocess_train(X, y, X_val, y_val) nn_metric, objective_func_name = self.__get_objective_func_name( self.stopping_metric) objective_func_name_to_monitor = self.__get_objective_func_to_monitor( objective_func_name) objective_optim_mode = np.less if objective_func_name in [ 'log_loss', 'root_mean_squared_error', 'mean_squared_error', 'mean_absolute_error', 'median_absolute_error', # Regression objectives 'pinball_loss', # Quantile objective ] else np.greater # TODO: calculate max emb concat layer size and use 1st layer as that value and 2nd in between number of classes and the value if params.get('layers', None) is not None: layers = params['layers'] elif self.problem_type in [REGRESSION, BINARY]: layers = [200, 100] elif self.problem_type == QUANTILE: base_size = max(len(self.quantile_levels) * 4, 128) layers = [base_size, base_size, base_size] else: base_size = max(data.c * 2, 100) layers = [base_size * 2, base_size] loss_func = None if self.problem_type == QUANTILE: loss_func = HuberPinballLoss(self.quantile_levels, alpha=self.params['alpha']) best_epoch_stop = params.get("best_epoch", None) # Use best epoch for refit_full. batch_size = self._get_batch_size(X) dls = data.dataloaders(bs=batch_size) # Make deterministic from fastai.torch_core import set_seed set_seed(0, True) dls.rng.seed(0) if self.problem_type == QUANTILE: dls.c = len(self.quantile_levels) self.model = tabular_learner( dls, layers=layers, metrics=nn_metric, config=tabular_config(ps=params['ps'], embed_p=params['emb_drop']), loss_func=loss_func, ) logger.log(15, self.model.model) fname = 'model' save_callback = AgSaveModelCallback( monitor=objective_func_name_to_monitor, comp=objective_optim_mode, fname=fname, best_epoch_stop=best_epoch_stop, with_opt=True) if time_limit is not None: time_elapsed = time.time() - start_time time_left = time_limit - time_elapsed if time_left <= time_limit * 0.7: # if 30% of time was spent preprocessing, likely not enough time to train model raise TimeLimitExceeded else: time_left = None early_stopping = EarlyStoppingCallbackWithTimeLimit( monitor=objective_func_name_to_monitor, comp=objective_optim_mode, min_delta=params['early.stopping.min_delta'], patience=params['early.stopping.patience'], time_limit=time_left, best_epoch_stop=best_epoch_stop) callbacks = [save_callback, early_stopping] with make_temp_directory() as temp_dir: with self.model.no_bar(): with self.model.no_logging(): original_path = self.model.path self.model.path = Path(temp_dir) len_val = len(X_val) if X_val is not None else 0 epochs = self._get_epochs_number(samples_num=len(X) + len_val, epochs=params['epochs'], batch_size=batch_size, time_left=time_left) if epochs == 0: # Stop early if there is not enough time to train a full epoch raise TimeLimitExceeded self.model.fit_one_cycle(epochs, params['lr'], cbs=callbacks) # Load the best one and export it self.model = self.model.load(fname) if objective_func_name == 'log_loss': eval_result = self.model.validate(dl=dls.valid)[0] else: eval_result = self.model.validate(dl=dls.valid)[1] logger.log(15, f'Model validation metrics: {eval_result}') self.model.path = original_path self.params_trained['epochs'] = epochs self.params_trained['best_epoch'] = save_callback.best_epoch