Пример #1
0
 def dataloaders(self,
                 bs=64,
                 val_bs=None,
                 shuffle_train=True,
                 n=None,
                 path='.',
                 dl_type=None,
                 dl_kwargs=None,
                 device=None,
                 **kwargs):
     if device is None: device = default_device()
     if dl_kwargs is None: dl_kwargs = [{}] * self.n_subsets
     if dl_type is None: dl_type = self._dl_type
     drop_last = kwargs.pop('drop_last', shuffle_train)
     dl = dl_type(self.subset(0),
                  bs=bs,
                  shuffle=shuffle_train,
                  drop_last=drop_last,
                  n=n,
                  device=device,
                  **merge(kwargs, dl_kwargs[0]))
     dls = [dl] + [
         dl.new(self.subset(i),
                bs=(bs if val_bs is None else val_bs),
                shuffle=False,
                drop_last=False,
                n=None,
                **dl_kwargs[i]) for i in range(1, self.n_subsets)
     ]
     return self._dbunch_type(*dls, path=path, device=device)
Пример #2
0
def to_device(b, device=None):
    "Recursively put `b` on `device`."
    if defaults.use_cuda == False: device = 'cpu'
    elif device is None: device = default_device()

    def _inner(o):
        return o.to(device, non_blocking=True) if isinstance(
            o,
            Tensor) else o.to_device(device) if hasattr(o, "to_device") else o

    return apply(_inner, b)
Пример #3
0
def sanity_check(self: Learner, show_table=False):
    "Performs a short epoch and uses all the callbacks in `self.cbs` on the CPU to ensure nothing is broken"
    device = getattr(self.dls, 'device', default_device())
    if hasattr(self.dls, 'device'):
        self.dls.device = 'cpu'
    else:
        # Using raw torch
        self.model.to('cpu')
    self.save('tmp')
    cbs = [ShortEpochCallback(short_valid=False)]
    if show_table:
        with self.no_bar(), self.no_logging():
            self.fit(1, cbs=cbs)
    else:
        self.fit(1, cbs=cbs)
    if hasattr(self.dls, 'device'):
        self.dls.device = device
    else:
        self.model.to(device)
    self.load('tmp')
Пример #4
0
    def _fit(self,
             X,
             y,
             X_val=None,
             y_val=None,
             time_limit=None,
             num_cpus=None,
             num_gpus=0,
             sample_weight=None,
             **kwargs):
        try_import_fastai()
        from fastai.tabular.model import tabular_config
        from fastai.tabular.learner import tabular_learner
        from fastai import torch_core
        from .callbacks import AgSaveModelCallback, EarlyStoppingCallbackWithTimeLimit
        from .quantile_helpers import HuberPinballLoss

        start_time = time.time()
        if sample_weight is not None:  # TODO: support
            logger.log(
                15,
                "sample_weight not yet supported for NNFastAiTabularModel, this model will ignore them in training."
            )

        params = self._get_model_params()

        self.y_scaler = params.get('y_scaler', None)
        if self.y_scaler is None:
            if self.problem_type == REGRESSION:
                self.y_scaler = sklearn.preprocessing.StandardScaler()
            elif self.problem_type == QUANTILE:
                self.y_scaler = sklearn.preprocessing.MinMaxScaler()
        else:
            self.y_scaler = copy.deepcopy(self.y_scaler)

        if num_gpus is not None:
            # TODO: Control CPU vs GPU usage during inference
            if num_gpus == 0:
                torch_core.default_device(use_cuda=False)
            else:
                # TODO: respect CUDA_VISIBLE_DEVICES to select proper GPU
                torch_core.default_device(use_cuda=True)

        logger.log(15, f'Fitting Neural Network with parameters {params}...')
        data = self._preprocess_train(X, y, X_val, y_val)

        nn_metric, objective_func_name = self.__get_objective_func_name(
            self.stopping_metric)
        objective_func_name_to_monitor = self.__get_objective_func_to_monitor(
            objective_func_name)
        objective_optim_mode = np.less if objective_func_name in [
            'log_loss',
            'root_mean_squared_error',
            'mean_squared_error',
            'mean_absolute_error',
            'median_absolute_error',  # Regression objectives
            'pinball_loss',  # Quantile objective
        ] else np.greater

        # TODO: calculate max emb concat layer size and use 1st layer as that value and 2nd in between number of classes and the value
        if params.get('layers', None) is not None:
            layers = params['layers']
        elif self.problem_type in [REGRESSION, BINARY]:
            layers = [200, 100]
        elif self.problem_type == QUANTILE:
            base_size = max(len(self.quantile_levels) * 4, 128)
            layers = [base_size, base_size, base_size]
        else:
            base_size = max(data.c * 2, 100)
            layers = [base_size * 2, base_size]

        loss_func = None
        if self.problem_type == QUANTILE:
            loss_func = HuberPinballLoss(self.quantile_levels,
                                         alpha=self.params['alpha'])

        best_epoch_stop = params.get("best_epoch",
                                     None)  # Use best epoch for refit_full.
        batch_size = self._get_batch_size(X)
        dls = data.dataloaders(bs=batch_size)

        # Make deterministic
        from fastai.torch_core import set_seed
        set_seed(0, True)
        dls.rng.seed(0)

        if self.problem_type == QUANTILE:
            dls.c = len(self.quantile_levels)

        self.model = tabular_learner(
            dls,
            layers=layers,
            metrics=nn_metric,
            config=tabular_config(ps=params['ps'], embed_p=params['emb_drop']),
            loss_func=loss_func,
        )
        logger.log(15, self.model.model)

        fname = 'model'
        save_callback = AgSaveModelCallback(
            monitor=objective_func_name_to_monitor,
            comp=objective_optim_mode,
            fname=fname,
            best_epoch_stop=best_epoch_stop,
            with_opt=True)

        if time_limit is not None:
            time_elapsed = time.time() - start_time
            time_left = time_limit - time_elapsed
            if time_left <= time_limit * 0.7:  # if 30% of time was spent preprocessing, likely not enough time to train model
                raise TimeLimitExceeded
        else:
            time_left = None

        early_stopping = EarlyStoppingCallbackWithTimeLimit(
            monitor=objective_func_name_to_monitor,
            comp=objective_optim_mode,
            min_delta=params['early.stopping.min_delta'],
            patience=params['early.stopping.patience'],
            time_limit=time_left,
            best_epoch_stop=best_epoch_stop)

        callbacks = [save_callback, early_stopping]

        with make_temp_directory() as temp_dir:
            with self.model.no_bar():
                with self.model.no_logging():
                    original_path = self.model.path
                    self.model.path = Path(temp_dir)

                    len_val = len(X_val) if X_val is not None else 0
                    epochs = self._get_epochs_number(samples_num=len(X) +
                                                     len_val,
                                                     epochs=params['epochs'],
                                                     batch_size=batch_size,
                                                     time_left=time_left)
                    if epochs == 0:
                        # Stop early if there is not enough time to train a full epoch
                        raise TimeLimitExceeded

                    self.model.fit_one_cycle(epochs,
                                             params['lr'],
                                             cbs=callbacks)

                    # Load the best one and export it
                    self.model = self.model.load(fname)

                    if objective_func_name == 'log_loss':
                        eval_result = self.model.validate(dl=dls.valid)[0]
                    else:
                        eval_result = self.model.validate(dl=dls.valid)[1]

                    logger.log(15, f'Model validation metrics: {eval_result}')
                    self.model.path = original_path

            self.params_trained['epochs'] = epochs
            self.params_trained['best_epoch'] = save_callback.best_epoch