def test_find_wall(): """quick sanity check to make sure that things run""" f = FieldModel() r = Robot() rotation = FakeRotation(f, r) cart_data = rotation.cartesian_data() (wall_magnitude, point) = find_wall(cart_data) (x, y) = point # # These values should be verified, but they look *close*. # Should add this function with some nicely colored output # into the field.py simulation. # assert round(wall_magnitude, 1) == 153.7 assert round(x, 1) == 140.5 assert round(y, 1) == 22.3
def test_r_squared(): # simple 45 degree line data = [(1,1), (2,2), (3,3), (4,4)] r2 = r_squared(data) assert round(1000*r2) == 1000 # simple -45 degree line data = [(-1,1), (-2,2), (-3,3), (-4,4)] r2 = r_squared(data) assert round(1000*r2) == 1000 # horizontal line data = [(1,5), (2,5), (3,5), (4,5)] r2 = r_squared(data) #print r2 #assert round(1000*r2) == 1000 # vertical line data = [(5,1), (5,2), (5,3), (5,4)] r2 = r_squared(data) #print r2 #assert r2 == 0 # more interesting line data = [(1,1), (2,2), (3,4), (4,1), (7,8), (12,14)] r2 = r_squared(data) #print r2 # now let's try from the field model (what is the r_squared on the whole thing?) f = FieldModel() rotation = FakeRotation(f) cart_data = rotation.cartesian_data() for i in range(0, len(cart_data)-4): slice = cart_data[i:i+4] r2 = r_squared(slice) print("{:.2f}".format(r2),end=" => ") print(slice)
def update_all_results (lidar_viewer, field_model, robot, factor): """generate synthetic lidar data based on model and analyze/plot""" rotation = FakeRotation(field_model, robot) # do simple sweep analysis and report sweep_heading, sweep_range = Analyzer.range_at_heading(rotation.polar_data(), (-5, 6)) print("Closest point in (-5,6) sweep is ({:d},{:.2f})".format(sweep_heading, sweep_range)) # do some analysis and gather up the results so they can be plotted # run a 4-point r-squared and collect those less than threshold value cart_data = rotation.cartesian_data() # try out the analyzer find_wall (heading, distance, orientation) = find_wall_midpoint(cart_data) print("Analyzer.find_wall() heading {:.1f}, range {:.1f}, orientation {:.1f})".format(heading, distance, orientation)) # plot the polar data for reference lidar_viewer.plot_polar(rotation.polar_data()) # plot the rectangular data lidar_viewer.plot_cartesian(cart_data) # polar markers (heading in degrees) find_wall_markers = [ (-heading, distance) ] # # display the average distance of data points # might be used to dynamically choose the r2 thresholds # or dynamically select the r-factor for analysis? avg_dist = avg_distance(cart_data) print("Average distance: {:.1f}\n".format(avg_dist)) # plot any calculated markers in their specified color #lidar_viewer.plot_markers(r2_markers, 'g') lidar_viewer.plot_polar_markers(find_wall_markers, 'r')