Exemplo n.º 1
0
def test_find_wall():
    """quick sanity check to make sure that things run"""
    f = FieldModel()
    r = Robot()

    rotation = FakeRotation(f, r)
    cart_data = rotation.cartesian_data()

    (wall_magnitude, point) = find_wall(cart_data)
    (x, y) = point

    #
    # These values should be verified, but they look *close*.
    # Should add this function with some nicely colored output
    # into the field.py simulation.
    #
    assert round(wall_magnitude, 1) == 153.7
    assert round(x, 1) == 140.5
    assert round(y, 1) == 22.3
Exemplo n.º 2
0
def test_r_squared():
    #  simple 45 degree line
    data = [(1,1), (2,2), (3,3), (4,4)]
    r2 = r_squared(data)
    assert round(1000*r2) == 1000

    #  simple -45 degree line
    data = [(-1,1), (-2,2), (-3,3), (-4,4)]
    r2 = r_squared(data)
    assert round(1000*r2) == 1000

    #  horizontal line
    data = [(1,5), (2,5), (3,5), (4,5)]
    r2 = r_squared(data)
    #print r2
    #assert round(1000*r2) == 1000

    #  vertical line
    data = [(5,1), (5,2), (5,3), (5,4)]
    r2 = r_squared(data)
    #print r2
    #assert r2 == 0


    #  more interesting line
    data = [(1,1), (2,2), (3,4), (4,1), (7,8), (12,14)]
    r2 = r_squared(data)
    #print r2


    #  now let's try from the field model  (what is the r_squared on the whole thing?)
    f = FieldModel()
    rotation = FakeRotation(f)
    cart_data = rotation.cartesian_data()
    for i in range(0, len(cart_data)-4):
        slice = cart_data[i:i+4]
        r2 = r_squared(slice)
        print("{:.2f}".format(r2),end=" => ")
        print(slice)
Exemplo n.º 3
0
def update_all_results (lidar_viewer, field_model, robot, factor):
    """generate synthetic lidar data based on model and analyze/plot"""
    rotation = FakeRotation(field_model, robot)

    # do simple sweep analysis and report
    sweep_heading, sweep_range = Analyzer.range_at_heading(rotation.polar_data(), (-5, 6))
    print("Closest point in (-5,6) sweep is ({:d},{:.2f})".format(sweep_heading, sweep_range))

    # do some analysis and gather up the results so they can be plotted
    # run a 4-point r-squared and collect those less than threshold value
    cart_data = rotation.cartesian_data()

    # try out the analyzer find_wall
    (heading, distance, orientation) = find_wall_midpoint(cart_data)
    print("Analyzer.find_wall() heading {:.1f}, range {:.1f}, orientation {:.1f})".format(heading, distance, orientation))

    #  plot the polar data for reference
    lidar_viewer.plot_polar(rotation.polar_data())

    #  plot the rectangular data
    lidar_viewer.plot_cartesian(cart_data)

    #  polar markers (heading in degrees)
    find_wall_markers = [ (-heading, distance) ]

    #
    # display the average distance of data points
    # might be used to dynamically choose the r2 thresholds
    # or dynamically select the r-factor for analysis?
    avg_dist = avg_distance(cart_data)
    print("Average distance: {:.1f}\n".format(avg_dist))

    # plot any calculated markers in their specified color
    #lidar_viewer.plot_markers(r2_markers, 'g')

    lidar_viewer.plot_polar_markers(find_wall_markers, 'r')