コード例 #1
0
ファイル: amberio.py プロジェクト: albaugh/forcebalance
    def setopts(self, **kwargs):
        
        """ Called by __init__ ; Set AMBER-specific options. """

        ## The directory containing TINKER executables (e.g. dynamic)
        if 'amberhome' in kwargs:
            self.amberhome = kwargs['amberhome']
            if not os.path.exists(os.path.join(self.amberhome,"sander")):
                warn_press_key("The 'sander' executable indicated by %s doesn't exist! (Check amberhome)" \
                                   % os.path.join(self.amberhome,"sander"))
        else:
            warn_once("The 'amberhome' option was not specified; using default.")
            if which('sander') == '':
                warn_press_key("Please add AMBER executables to the PATH or specify amberhome.")
            self.amberhome = os.path.split(which('sander'))[0]
        
        with wopen('.quit.leap') as f:
            print >> f, 'quit'

        # AMBER search path
        self.spath = []
        for line in self.callamber('tleap -f .quit.leap'):
            if 'Adding' in line and 'to search path' in line:
                self.spath.append(line.split('Adding')[1].split()[0])
        os.remove('.quit.leap')
コード例 #2
0
    def __init__(self, options, tgt_opts, forcefield):

        if not recharge_import_success:
            warn_once("Note: Failed to import the OpenFF Recharge package - FB Recharge_SMIRNOFF target will not work. ")

        if not toolkit_import_success:
            warn_once("Note: Failed to import the OpenFF Toolkit - FB Recharge_SMIRNOFF target will not work. ")

        super(Recharge_SMIRNOFF, self).__init__(options, tgt_opts, forcefield)

        # Store a mapping between the FB pval parameters and the expected recharge
        # ordering.
        self._parameter_to_bcc_map = None

        # Pre-calculate the expensive portion of the objective function.
        self._design_matrix = None
        self._target_residuals = None

        # Store a copy of the objective function details from the previous
        # optimisation cycle.
        self._molecule_residual_ranges = {}
        self._per_molecule_residuals = {}

        # Get the filename for the database which contains the ESP data
        # to train against.
        self.set_option(tgt_opts, "recharge_esp_store", forceprint=True)
        self.set_option(tgt_opts, "recharge_property", forceprint=True)

        assert self.recharge_property in ["esp", "electric-field"]

        # Initialize the target.
        self._initialize()
コード例 #3
0
    def setopts(self, **kwargs):
        """ Called by __init__ ; Set AMBER-specific options. """

        ## The directory containing TINKER executables (e.g. dynamic)
        if 'amberhome' in kwargs:
            self.amberhome = kwargs['amberhome']
            if not os.path.exists(os.path.join(self.amberhome, "sander")):
                warn_press_key("The 'sander' executable indicated by %s doesn't exist! (Check amberhome)" \
                                   % os.path.join(self.amberhome,"sander"))
        else:
            warn_once(
                "The 'amberhome' option was not specified; using default.")
            if which('sander') == '':
                warn_press_key(
                    "Please add AMBER executables to the PATH or specify amberhome."
                )
            self.amberhome = os.path.split(which('sander'))[0]

        with wopen('.quit.leap') as f:
            print >> f, 'quit'

        # AMBER search path
        self.spath = []
        for line in self.callamber('tleap -f .quit.leap'):
            if 'Adding' in line and 'to search path' in line:
                self.spath.append(line.split('Adding')[1].split()[0])
        os.remove('.quit.leap')
コード例 #4
0
    def normal_modes(self, shot=0, optimize=True):

        logger.error('Normal modes are not yet implemented in AMBER interface')
        raise NotImplementedError

        # Copied from tinkerio.py
        if optimize:
            self.optimize(shot, crit=1e-6)
            o = self.calltinker("vibrate %s.xyz_2 a" % (self.name))
        else:
            warn_once("Asking for normal modes without geometry optimization?")
            self.mol[shot].write('%s.xyz' % self.name, ftype="tinker")
            o = self.calltinker("vibrate %s.xyz a" % (self.name))
        # Read the TINKER output.  The vibrational frequencies are ordered.
        # The six modes with frequencies closest to zero are ignored
        readev = False
        calc_eigvals = []
        calc_eigvecs = []
        for line in o:
            s = line.split()
            if "Vibrational Normal Mode" in line:
                freq = float(s[-2])
                readev = False
                calc_eigvals.append(freq)
                calc_eigvecs.append([])
            elif "Atom" in line and "Delta X" in line:
                readev = True
            elif readev and len(s) == 4 and all(
                [isint(s[0]),
                 isfloat(s[1]),
                 isfloat(s[2]),
                 isfloat(s[3])]):
                calc_eigvecs[-1].append([float(i) for i in s[1:]])
        calc_eigvals = np.array(calc_eigvals)
        calc_eigvecs = np.array(calc_eigvecs)
        # Sort by frequency absolute value and discard the six that are closest to zero
        calc_eigvecs = calc_eigvecs[np.argsort(np.abs(calc_eigvals))][6:]
        calc_eigvals = calc_eigvals[np.argsort(np.abs(calc_eigvals))][6:]
        # Sort again by frequency
        calc_eigvecs = calc_eigvecs[np.argsort(calc_eigvals)]
        calc_eigvals = calc_eigvals[np.argsort(calc_eigvals)]
        os.system("rm -rf *.xyz_* *.[0-9][0-9][0-9]")
        return calc_eigvals, calc_eigvecs
コード例 #5
0
ファイル: evaluator_io.py プロジェクト: pavankum/forcebalance
    def __init__(self, options, tgt_opts, forcefield):

        if not evaluator_import_success:
            warn_once(
                "Note: Failed to import the OpenFF Evaluator - FB Evaluator target will not work. "
            )

        if not toolkit_import_success:
            warn_once(
                "Note: Failed to import the OpenFF Toolkit - FB Evaluator target will not work. "
            )

        super(Evaluator_SMIRNOFF, self).__init__(options, tgt_opts, forcefield)

        self._options = None  # The options for this target loaded from JSON.
        self._default_units = (
            {})  # The default units to convert each type of property to.

        self._client = None  # The client object which will communicate with an already spun up server.

        self._reference_data_set = None  # The data set of properties to estimate.
        self._normalised_weights = (
            None  # The normalised weights of the different properties.
        )

        # Store a `Future` like object which can be queried for the results of
        # a property estimation.
        self._pending_estimate_request = None

        # Store a mapping between gradient keys and the force balance string representation.
        self._gradient_key_mappings = {}
        self._parameter_units = {}

        # Store a copy of the objective function details from the previous optimisation cycle.
        self._last_obj_details = {}

        # Get the filename for the evaluator input file.
        self.set_option(tgt_opts, "evaluator_input", forceprint=True)

        # Initialize the target.
        self._initialize()
コード例 #6
0
ファイル: amberio.py プロジェクト: albaugh/forcebalance
    def normal_modes(self, shot=0, optimize=True):

        logger.error('Normal modes are not yet implemented in AMBER interface')
        raise NotImplementedError

        # Copied from tinkerio.py
        if optimize:
            self.optimize(shot, crit=1e-6)
            o = self.calltinker("vibrate %s.xyz_2 a" % (self.name))
        else:
            warn_once("Asking for normal modes without geometry optimization?")
            self.mol[shot].write('%s.xyz' % self.name, ftype="tinker")
            o = self.calltinker("vibrate %s.xyz a" % (self.name))
        # Read the TINKER output.  The vibrational frequencies are ordered.
        # The six modes with frequencies closest to zero are ignored
        readev = False
        calc_eigvals = []
        calc_eigvecs = []
        for line in o:
            s = line.split()
            if "Vibrational Normal Mode" in line:
                freq = float(s[-2])
                readev = False
                calc_eigvals.append(freq)
                calc_eigvecs.append([])
            elif "Atom" in line and "Delta X" in line:
                readev = True
            elif readev and len(s) == 4 and all([isint(s[0]), isfloat(s[1]), isfloat(s[2]), isfloat(s[3])]):
                calc_eigvecs[-1].append([float(i) for i in s[1:]])
        calc_eigvals = np.array(calc_eigvals)
        calc_eigvecs = np.array(calc_eigvecs)
        # Sort by frequency absolute value and discard the six that are closest to zero
        calc_eigvecs = calc_eigvecs[np.argsort(np.abs(calc_eigvals))][6:]
        calc_eigvals = calc_eigvals[np.argsort(np.abs(calc_eigvals))][6:]
        # Sort again by frequency
        calc_eigvecs = calc_eigvecs[np.argsort(calc_eigvals)]
        calc_eigvals = calc_eigvals[np.argsort(calc_eigvals)]
        os.system("rm -rf *.xyz_* *.[0-9][0-9][0-9]")
        return calc_eigvals, calc_eigvecs
コード例 #7
0
import os

import numpy as np

from forcebalance.nifty import printcool_dictionary, warn_once
from forcebalance.output import getLogger
from forcebalance.target import Target

try:
    from openff.recharge.charges.charges import ChargeSettings
    from openff.recharge.esp.storage import MoleculeESPStore
    from openff.recharge.optimize import ESPOptimization
    from openff.recharge.smirnoff import from_smirnoff
except ImportError:
    warn_once("Note: Failed to import the optional openff.recharge package.")

try:
    from openforcefield.typing.engines import smirnoff
except ImportError:
    warn_once("Note: Failed to import the optional openforcefield package. ")

logger = getLogger(__name__)


class Recharge_SMIRNOFF(Target):
    """A custom optimisation target which employs the `openff-recharge`
    package to train bond charge correction parameters against QM derived
    electrostatic potential data."""
    def __init__(self, options, tgt_opts, forcefield):
コード例 #8
0
ファイル: amberio.py プロジェクト: albaugh/forcebalance
    def molecular_dynamics(self, nsteps, timestep, temperature=None, pressure=None, nequil=0, nsave=1000, minimize=True, anisotropic=False, threads=1, verbose=False, **kwargs):
        
        """
        Method for running a molecular dynamics simulation.  

        Required arguments:
        nsteps      = (int)   Number of total time steps
        timestep    = (float) Time step in FEMTOSECONDS
        temperature = (float) Temperature control (Kelvin)
        pressure    = (float) Pressure control (atmospheres)
        nequil      = (int)   Number of additional time steps at the beginning for equilibration
        nsave       = (int)   Step interval for saving and printing data
        minimize    = (bool)  Perform an energy minimization prior to dynamics
        threads     = (int)   Specify how many OpenMP threads to use

        Returns simulation data:
        Rhos        = (array)     Density in kilogram m^-3
        Potentials  = (array)     Potential energies
        Kinetics    = (array)     Kinetic energies
        Volumes     = (array)     Box volumes
        Dips        = (3xN array) Dipole moments
        EComps      = (dict)      Energy components
        """

        logger.error('Molecular dynamics not yet implemented in AMBER interface')
        raise NotImplementedError

        md_defs = OrderedDict()
        md_opts = OrderedDict()
        # Print out averages only at the end.
        md_opts["printout"] = nsave
        md_opts["openmp-threads"] = threads
        # Langevin dynamics for temperature control.
        if temperature != None:
            md_defs["integrator"] = "stochastic"
        else:
            md_defs["integrator"] = "beeman"
            md_opts["thermostat"] = None
        # Periodic boundary conditions.
        if self.pbc:
            md_opts["vdw-correction"] = ''
            if temperature != None and pressure != None: 
                md_defs["integrator"] = "beeman"
                md_defs["thermostat"] = "bussi"
                md_defs["barostat"] = "montecarlo"
                if anisotropic:
                    md_opts["aniso-pressure"] = ''
            elif pressure != None:
                warn_once("Pressure is ignored because temperature is turned off.")
        else:
            if pressure != None:
                warn_once("Pressure is ignored because pbc is set to False.")
            # Use stochastic dynamics for the gas phase molecule.
            # If we use the regular integrators it may miss
            # six degrees of freedom in calculating the kinetic energy.
            md_opts["barostat"] = None

        eq_opts = deepcopy(md_opts)
        if self.pbc and temperature != None and pressure != None: 
            eq_opts["integrator"] = "beeman"
            eq_opts["thermostat"] = "bussi"
            eq_opts["barostat"] = "berendsen"

        if minimize:
            if verbose: logger.info("Minimizing the energy...")
            self.optimize(method="bfgs", crit=1)
            os.system("mv %s.xyz_2 %s.xyz" % (self.name, self.name))
            if verbose: logger.info("Done\n")

        # Run equilibration.
        if nequil > 0:
            write_key("%s-eq.key" % self.name, eq_opts, "%s.key" % self.name, md_defs)
            if verbose: printcool("Running equilibration dynamics", color=0)
            if self.pbc and pressure != None:
                self.calltinker("dynamic %s -k %s-eq %i %f %f 4 %f %f" % (self.name, self.name, nequil, timestep, float(nsave*timestep)/1000, 
                                                                          temperature, pressure), print_to_screen=verbose)
            else:
                self.calltinker("dynamic %s -k %s-eq %i %f %f 2 %f" % (self.name, self.name, nequil, timestep, float(nsave*timestep)/1000,
                                                                       temperature), print_to_screen=verbose)
            os.system("rm -f %s.arc" % (self.name))

        # Run production.
        if verbose: printcool("Running production dynamics", color=0)
        write_key("%s-md.key" % self.name, md_opts, "%s.key" % self.name, md_defs)
        if self.pbc and pressure != None:
            odyn = self.calltinker("dynamic %s -k %s-md %i %f %f 4 %f %f" % (self.name, self.name, nsteps, timestep, float(nsave*timestep/1000), 
                                                                             temperature, pressure), print_to_screen=verbose)
        else:
            odyn = self.calltinker("dynamic %s -k %s-md %i %f %f 2 %f" % (self.name, self.name, nsteps, timestep, float(nsave*timestep/1000), 
                                                                          temperature), print_to_screen=verbose)
            
        # Gather information.
        os.system("mv %s.arc %s-md.arc" % (self.name, self.name))
        self.md_trajectory = "%s-md.arc" % self.name
        edyn = []
        kdyn = []
        temps = []
        for line in odyn:
            s = line.split()
            if 'Current Potential' in line:
                edyn.append(float(s[2]))
            if 'Current Kinetic' in line:
                kdyn.append(float(s[2]))
            if len(s) > 0 and s[0] == 'Temperature' and s[2] == 'Kelvin':
                temps.append(float(s[1]))

        # Potential and kinetic energies converted to kJ/mol.
        edyn = np.array(edyn) * 4.184
        kdyn = np.array(kdyn) * 4.184
        temps = np.array(temps)
    
        if verbose: logger.info("Post-processing to get the dipole moments\n")
        oanl = self.calltinker("analyze %s-md.arc" % self.name, stdin="G,E,M", print_to_screen=False)

        # Read potential energy and dipole from file.
        eanl = []
        dip = []
        mass = 0.0
        ecomp = OrderedDict()
        havekeys = set()
        first_shot = True
        for ln, line in enumerate(oanl):
            strip = line.strip()
            s = line.split()
            if 'Total System Mass' in line:
                mass = float(s[-1])
            if 'Total Potential Energy : ' in line:
                eanl.append(float(s[4]))
            if 'Dipole X,Y,Z-Components :' in line:
                dip.append([float(s[i]) for i in range(-3,0)])
            if first_shot:
                for key in eckeys:
                    if strip.startswith(key):
                        if key in ecomp:
                            ecomp[key].append(float(s[-2])*4.184)
                        else:
                            ecomp[key] = [float(s[-2])*4.184]
                        if key in havekeys:
                            first_shot = False
                        havekeys.add(key)
            else:
                for key in havekeys:
                    if strip.startswith(key):
                        if key in ecomp:
                            ecomp[key].append(float(s[-2])*4.184)
                        else:
                            ecomp[key] = [float(s[-2])*4.184]
        for key in ecomp:
            ecomp[key] = np.array(ecomp[key])
        ecomp["Potential Energy"] = edyn
        ecomp["Kinetic Energy"] = kdyn
        ecomp["Temperature"] = temps
        ecomp["Total Energy"] = edyn+kdyn

        # Energies in kilojoules per mole
        eanl = np.array(eanl) * 4.184
        # Dipole moments in debye
        dip = np.array(dip)
        # Volume of simulation boxes in cubic nanometers
        # Conversion factor derived from the following:
        # In [22]: 1.0 * gram / mole / (1.0 * nanometer)**3 / AVOGADRO_CONSTANT_NA / (kilogram/meter**3)
        # Out[22]: 1.6605387831627252
        conv = 1.6605387831627252
        if self.pbc:
            vol = np.array([BuildLatticeFromLengthsAngles(*[float(j) for j in line.split()]).V \
                                for line in open("%s-md.arc" % self.name).readlines() \
                                if (len(line.split()) == 6 and isfloat(line.split()[1]) \
                                        and all([isfloat(i) for i in line.split()[:6]]))]) / 1000
            rho = conv * mass / vol
        else:
            vol = None
            rho = None
        prop_return = OrderedDict()
        prop_return.update({'Rhos': rho, 'Potentials': edyn, 'Kinetics': kdyn, 'Volumes': vol, 'Dips': dip, 'Ecomps': ecomp})
        return prop_return
コード例 #9
0
import numpy as np
from forcebalance.nifty import warn_once, printcool, printcool_dictionary
from forcebalance.output import getLogger
from forcebalance.target import Target

try:
    from openff.evaluator import unit
    from openff.evaluator.attributes import UNDEFINED
    from openff.evaluator.client import EvaluatorClient, ConnectionOptions, RequestOptions
    from openff.evaluator.datasets import PhysicalPropertyDataSet
    from openff.evaluator.utils.exceptions import EvaluatorException
    from openff.evaluator.utils.openmm import openmm_quantity_to_pint
    from openff.evaluator.utils.serialization import TypedJSONDecoder, TypedJSONEncoder
    from openff.evaluator.forcefield import ParameterGradientKey
except ImportError:
    warn_once("Note: Failed to import the optional openff.evaluator package. ")

try:
    from openforcefield.typing.engines import smirnoff
except ImportError:
    warn_once("Note: Failed to import the optional openforcefield package. ")

logger = getLogger(__name__)


class Evaluator_SMIRNOFF(Target):
    """A custom optimisation target which employs the `openff-evaluator`
    package to rapidly estimate a collection of condensed phase physical
    properties at each optimisation epoch."""
    class OptionsFile:
        """Represents the set of options that a `Evaluator_SMIRNOFF`
コード例 #10
0
from forcebalance.target import Target

logger = getLogger(__name__)

try:
    import propertyestimator
    from propertyestimator import unit
    from propertyestimator.client import PropertyEstimatorClient, ConnectionOptions, PropertyEstimatorOptions
    from propertyestimator.datasets import ThermoMLDataSet, PhysicalPropertyDataSet
    from propertyestimator.utils.exceptions import PropertyEstimatorException
    from propertyestimator.utils.openmm import openmm_quantity_to_pint
    from propertyestimator.utils.serialization import TypedJSONDecoder, TypedJSONEncoder
    from propertyestimator.workflow import WorkflowOptions
    from propertyestimator.properties import ParameterGradientKey
except ImportError:
    warn_once("Failed to import the propertyestimator package.")

try:
    from openforcefield.typing.engines import smirnoff
except ImportError:
    warn_once("Failed to import the openforcefield package.")


class PropertyEstimate_SMIRNOFF(Target):
    """A custom optimisation target which employs the propertyestimator
    package to rapidly estimate a collection of condensed phase physical
    properties at each optimisation epoch."""
    class OptionsFile:
        """Represents the set of options that a `PropertyEstimate_SMIRNOFF`
        target will be run with.
コード例 #11
0
    def molecular_dynamics(self,
                           nsteps,
                           timestep,
                           temperature=None,
                           pressure=None,
                           nequil=0,
                           nsave=1000,
                           minimize=True,
                           anisotropic=False,
                           threads=1,
                           verbose=False,
                           **kwargs):
        """
        Method for running a molecular dynamics simulation.  

        Required arguments:
        nsteps      = (int)   Number of total time steps
        timestep    = (float) Time step in FEMTOSECONDS
        temperature = (float) Temperature control (Kelvin)
        pressure    = (float) Pressure control (atmospheres)
        nequil      = (int)   Number of additional time steps at the beginning for equilibration
        nsave       = (int)   Step interval for saving and printing data
        minimize    = (bool)  Perform an energy minimization prior to dynamics
        threads     = (int)   Specify how many OpenMP threads to use

        Returns simulation data:
        Rhos        = (array)     Density in kilogram m^-3
        Potentials  = (array)     Potential energies
        Kinetics    = (array)     Kinetic energies
        Volumes     = (array)     Box volumes
        Dips        = (3xN array) Dipole moments
        EComps      = (dict)      Energy components
        """

        logger.error(
            'Molecular dynamics not yet implemented in AMBER interface')
        raise NotImplementedError

        md_defs = OrderedDict()
        md_opts = OrderedDict()
        # Print out averages only at the end.
        md_opts["printout"] = nsave
        md_opts["openmp-threads"] = threads
        # Langevin dynamics for temperature control.
        if temperature != None:
            md_defs["integrator"] = "stochastic"
        else:
            md_defs["integrator"] = "beeman"
            md_opts["thermostat"] = None
        # Periodic boundary conditions.
        if self.pbc:
            md_opts["vdw-correction"] = ''
            if temperature != None and pressure != None:
                md_defs["integrator"] = "beeman"
                md_defs["thermostat"] = "bussi"
                md_defs["barostat"] = "montecarlo"
                if anisotropic:
                    md_opts["aniso-pressure"] = ''
            elif pressure != None:
                warn_once(
                    "Pressure is ignored because temperature is turned off.")
        else:
            if pressure != None:
                warn_once("Pressure is ignored because pbc is set to False.")
            # Use stochastic dynamics for the gas phase molecule.
            # If we use the regular integrators it may miss
            # six degrees of freedom in calculating the kinetic energy.
            md_opts["barostat"] = None

        eq_opts = deepcopy(md_opts)
        if self.pbc and temperature != None and pressure != None:
            eq_opts["integrator"] = "beeman"
            eq_opts["thermostat"] = "bussi"
            eq_opts["barostat"] = "berendsen"

        if minimize:
            if verbose: logger.info("Minimizing the energy...")
            self.optimize(method="bfgs", crit=1)
            os.system("mv %s.xyz_2 %s.xyz" % (self.name, self.name))
            if verbose: logger.info("Done\n")

        # Run equilibration.
        if nequil > 0:
            write_key("%s-eq.key" % self.name, eq_opts, "%s.key" % self.name,
                      md_defs)
            if verbose: printcool("Running equilibration dynamics", color=0)
            if self.pbc and pressure != None:
                self.calltinker(
                    "dynamic %s -k %s-eq %i %f %f 4 %f %f" %
                    (self.name, self.name, nequil, timestep,
                     float(nsave * timestep) / 1000, temperature, pressure),
                    print_to_screen=verbose)
            else:
                self.calltinker("dynamic %s -k %s-eq %i %f %f 2 %f" %
                                (self.name, self.name, nequil, timestep,
                                 float(nsave * timestep) / 1000, temperature),
                                print_to_screen=verbose)
            os.system("rm -f %s.arc" % (self.name))

        # Run production.
        if verbose: printcool("Running production dynamics", color=0)
        write_key("%s-md.key" % self.name, md_opts, "%s.key" % self.name,
                  md_defs)
        if self.pbc and pressure != None:
            odyn = self.calltinker(
                "dynamic %s -k %s-md %i %f %f 4 %f %f" %
                (self.name, self.name, nsteps, timestep,
                 float(nsave * timestep / 1000), temperature, pressure),
                print_to_screen=verbose)
        else:
            odyn = self.calltinker(
                "dynamic %s -k %s-md %i %f %f 2 %f" %
                (self.name, self.name, nsteps, timestep,
                 float(nsave * timestep / 1000), temperature),
                print_to_screen=verbose)

        # Gather information.
        os.system("mv %s.arc %s-md.arc" % (self.name, self.name))
        self.md_trajectory = "%s-md.arc" % self.name
        edyn = []
        kdyn = []
        temps = []
        for line in odyn:
            s = line.split()
            if 'Current Potential' in line:
                edyn.append(float(s[2]))
            if 'Current Kinetic' in line:
                kdyn.append(float(s[2]))
            if len(s) > 0 and s[0] == 'Temperature' and s[2] == 'Kelvin':
                temps.append(float(s[1]))

        # Potential and kinetic energies converted to kJ/mol.
        edyn = np.array(edyn) * 4.184
        kdyn = np.array(kdyn) * 4.184
        temps = np.array(temps)

        if verbose: logger.info("Post-processing to get the dipole moments\n")
        oanl = self.calltinker("analyze %s-md.arc" % self.name,
                               stdin="G,E,M",
                               print_to_screen=False)

        # Read potential energy and dipole from file.
        eanl = []
        dip = []
        mass = 0.0
        ecomp = OrderedDict()
        havekeys = set()
        first_shot = True
        for ln, line in enumerate(oanl):
            strip = line.strip()
            s = line.split()
            if 'Total System Mass' in line:
                mass = float(s[-1])
            if 'Total Potential Energy : ' in line:
                eanl.append(float(s[4]))
            if 'Dipole X,Y,Z-Components :' in line:
                dip.append([float(s[i]) for i in range(-3, 0)])
            if first_shot:
                for key in eckeys:
                    if strip.startswith(key):
                        if key in ecomp:
                            ecomp[key].append(float(s[-2]) * 4.184)
                        else:
                            ecomp[key] = [float(s[-2]) * 4.184]
                        if key in havekeys:
                            first_shot = False
                        havekeys.add(key)
            else:
                for key in havekeys:
                    if strip.startswith(key):
                        if key in ecomp:
                            ecomp[key].append(float(s[-2]) * 4.184)
                        else:
                            ecomp[key] = [float(s[-2]) * 4.184]
        for key in ecomp:
            ecomp[key] = np.array(ecomp[key])
        ecomp["Potential Energy"] = edyn
        ecomp["Kinetic Energy"] = kdyn
        ecomp["Temperature"] = temps
        ecomp["Total Energy"] = edyn + kdyn

        # Energies in kilojoules per mole
        eanl = np.array(eanl) * 4.184
        # Dipole moments in debye
        dip = np.array(dip)
        # Volume of simulation boxes in cubic nanometers
        # Conversion factor derived from the following:
        # In [22]: 1.0 * gram / mole / (1.0 * nanometer)**3 / AVOGADRO_CONSTANT_NA / (kilogram/meter**3)
        # Out[22]: 1.6605387831627252
        conv = 1.6605387831627252
        if self.pbc:
            vol = np.array([BuildLatticeFromLengthsAngles(*[float(j) for j in line.split()]).V \
                                for line in open("%s-md.arc" % self.name).readlines() \
                                if (len(line.split()) == 6 and isfloat(line.split()[1]) \
                                        and all([isfloat(i) for i in line.split()[:6]]))]) / 1000
            rho = conv * mass / vol
        else:
            vol = None
            rho = None
        prop_return = OrderedDict()
        prop_return.update({
            'Rhos': rho,
            'Potentials': edyn,
            'Kinetics': kdyn,
            'Volumes': vol,
            'Dips': dip,
            'Ecomps': ecomp
        })
        return prop_return