# pylab.ylabel('True positive rate') # pylab.xlabel('False positive rate') # pylab.axis([0, 1, 0, 1]) # pylab.savefig('9-results/roc.png') # Initialize radius = 25 radiusInfos = [] length = 50 lengthInfos = [] scanInformationByPath = loadInformations('probabilities', '.') # For each scanInformation, for scanFolderPath, scanInformation in scanInformationByPath.iteritems(): # Initialize scanPath = os.path.join(scanFolderPath, folder_store.fileNameByFolderName['probabilities']) # Evaluate with radius radiusInfos.append(evaluation_process.evaluateWindowsByRadius(scanPath, radius)) # Evaluate with length lengthInfos.append(evaluation_process.evaluateWindowsByLength(scanPath, length)) # Plot with radius pylab.figure() pylab.plot([x['recall'] for x in radiusInfos], [x['precision'] for x in radiusInfos], '*') pylab.title('Evaluation of scan using relative circles (circle radius of %s meters)' % radius) pylab.ylabel('Precision (Percent of predicted that are actual)') pylab.xlabel('Recall (Percent of actual that are predicted)') pylab.axis([0, 1, 0, 1]) pylab.savefig(expandPath('scanEvaluationByRadius.png')) # Plot with length pylab.figure() pylab.plot([x['false positive rate'] for x in lengthInfos], [x['true positive rate'] for x in lengthInfos], '*') pylab.title('Evaluation of scan using absolute rectangles (rectangle length of %s meters)' % length) pylab.ylabel('True positive rate')