def welch_pw2(img, win_size=512, overlp_x=50, overlp_y=50, edge_x=0, edge_y=0): """ Calculate the power spectrum using Welch periodograms (overlapped periodogram) """ from fundamentals import window2d, ramp from EMAN2 import periodogram nx = img.get_xsize() ny = img.get_ysize() nx_fft = smallprime(nx) ny_fft = smallprime(ny) img1 = window2d(img,nx_fft,ny_fft,"l") x_gaussian_hi = 1./win_size del img from filter import filt_gaussh from utilities import info, drop_image e_fil = filt_gaussh(img1, x_gaussian_hi) x38 = 100/(100-overlp_x) # normalization of % of the overlap in x x39 = 100/(100-overlp_y) # normalization of % of the overlap in y x26 = int(x38*((nx-2*edge_x)/win_size-1)+1) # number of pieces horizontal dim.(X) x29 = int(x39*((ny-2*edge_y)/win_size-1)+1) # number of pieces vertical dim.(Y) iz = 0 pw2 = EMData() for iy in xrange(1, x29+1): x21 = (win_size/x39)*(iy-1) + edge_y # y-direction it should start from 0 if edge_y=0 for ix in xrange(1, x26+1): x22 = (win_size/x38)*(ix-1) + edge_x # x-direction it should start from 0 if edge_x =0 wi = window2d(e_fil, win_size, win_size, "l", x22, x21) ra = ramp(wi) iz = iz+1 if (iz == 1): pw2 = periodogram(ra) else: pw2 += periodogram(ra) return pw2/float(iz)
def image_decimate(img, decimation=2, fit_to_fft = True, frequency_low=0, frequency_high=0): """ Window 2D image to FFT-friendly size, apply Butterworth low pass filter, and decimate image by integer factor """ from filter import filt_btwl from fundamentals import smallprime, window2d from utilities import get_image if type(img) == str: img=get_image(img) nz = img.get_zsize() if( nz > 1): ERROR("This command works only for 2-D images", "image_decimate", 1) if decimation <= 1 : ERROR("Improper decimation ratio", "image_decimate", 1) if(decimation == 1.0): return img.copy() if frequency_low <= 0 : frequency_low = 0.5/decimation-0.02 if frequency_low <= 0 : ERROR("Butterworth pass-band frequency is too low","image_decimation",1) frequency_high = min(0.5/decimation + 0.02, 0.499) if fit_to_fft: nx = img.get_xsize() ny = img.get_ysize() nx_fft_m = smallprime(nx) ny_fft_m = smallprime(ny) e = Util.window(img, nx_fft_m, ny_fft_m, 1, 0,0,0) e = filt_btwl(e, frequency_low, frequency_high) else: e = filt_btwl(img, frequency_low, frequency_high) return Util.decimate(e, int(decimation), int(decimation), 1)
def image_decimate(img, decimation=2, fit_to_fft = True, frequency_low=0, frequency_high=0): """ Window 2D image to FFT-friendly size, apply Butterworth low pass filter, and decimate image by integer factor """ from filter import filt_btwl from fundamentals import smallprime, window2d from utilities import get_image if type(img) == str: img=get_image(img) nz = img.get_zsize() if( nz > 1): ERROR("This command works only for 2-D images", "image_decimate", 1) if decimation <= 1 : ERROR("Improper decimation ratio", "image_decimate", 1) if(decimation == 1.0): return img.copy() if frequency_low <= 0 : frequency_low = 0.5/decimation-0.02 if frequency_low <= 0 : ERROR("Butterworth passband frequency is too low","image_decimation",1) frequency_high = min(0.5/decimation + 0.02, 0.499) if fit_to_fft: nx = img.get_xsize() ny = img.get_ysize() nx_fft_m = smallprime(nx) ny_fft_m = smallprime(ny) e = Util.window(img, nx_fft_m, ny_fft_m, 1, 0,0,0) e = filt_btwl(e, frequency_low, frequency_high) else: e = filt_btwl(img, frequency_low, frequency_high) return Util.decimate(e, int(decimation), int(decimation), 1)
def tilemic(img, win_size=512, overlp_x=50, overlp_y=50, edge_x=0, edge_y=0): """ Calculate the power spectrum using Welch periodograms (overlapped periodogram) """ from fundamentals import window2d, ramp from EMAN2 import periodogram nx = img.get_xsize() ny = img.get_ysize() nx_fft = smallprime(nx) ny_fft = smallprime(ny) x_gaussian_hi = 1./win_size from filter import filt_gaussh e_fil = filt_gaussh(window2d(img,nx_fft,ny_fft,"l"), x_gaussian_hi) x38 = 100/(100-overlp_x) # normalization of % of the overlap in x x39 = 100/(100-overlp_y) # normalization of % of the overlap in y x26 = int(x38*((nx-2*edge_x)/win_size-1)+1) # number of pieces horizontal dim.(X) x29 = int(x39*((ny-2*edge_y)/win_size-1)+1) # number of pieces vertical dim.(Y) pw2 = [] for iy in xrange(1, x29+1): x21 = (win_size/x39)*(iy-1) + edge_y # y-direction it should start from 0 if edge_y=0 for ix in xrange(1, x26+1): x22 = (win_size/x38)*(ix-1) + edge_x # x-direction it should start from 0 if edge_x =0 wi = ramp( window2d(e_fil, win_size, win_size, "l", x22, x21) ) st = Util.infomask(wi, None, True) wi = (wi - st[0])/st[1]*win_size pw2.append(periodogram(wi)) return pw2
def welch_pw2(img, win_size=512, overlp_x=50, overlp_y=50, edge_x=0, edge_y=0): """ Calculate the power spectrum using Welch periodograms (overlapped periodogram) """ from fundamentals import window2d, ramp from EMAN2 import periodogram nx = img.get_xsize() ny = img.get_ysize() nx_fft = smallprime(nx) ny_fft = smallprime(ny) x_gaussian_hi = 1./win_size from filter import filt_gaussh e_fil = filt_gaussh(window2d(img,nx_fft,ny_fft,"l"), x_gaussian_hi) x38 = 100/(100-overlp_x) # normalization of % of the overlap in x x39 = 100/(100-overlp_y) # normalization of % of the overlap in y x26 = int(x38*((nx-2*edge_x)/win_size-1)+1) # number of pieces horizontal dim.(X) x29 = int(x39*((ny-2*edge_y)/win_size-1)+1) # number of pieces vertical dim.(Y) iz = 0 pw2 = EMData() for iy in xrange(1, x29+1): x21 = (win_size/x39)*(iy-1) + edge_y # y-direction it should start from 0 if edge_y=0 for ix in xrange(1, x26+1): x22 = (win_size/x38)*(ix-1) + edge_x # x-direction it should start from 0 if edge_x =0 wi = window2d(e_fil, win_size, win_size, "l", x22, x21) iz = iz+1 if (iz == 1): pw2 = periodogram(ramp(wi)) else: pw2 += periodogram(ramp(wi)) return pw2/float(iz)
def welch_pw2_tilt_band(img, theta, num_bnd=-1, overlp_y=50, edge_x=0, edge_y=0, win_s=256): """ 1. Calculate the power spectra of tilt bands 2. The tilt micrograph is rotated such that the tilt axis is vertical (along Y axis) 3. edge_x and edge_y are removed from the micrograph """ from EMAN2 import periodogram nx = img.get_xsize() ny = img.get_ysize() num1 = int(nx - 2 * edge_x) num2 = int(ny - 2 * edge_y) nx_fft = smallprime(num1) ny_fft = smallprime(num2) img1 = window2d(img, nx_fft, ny_fft, "l", edge_x, edge_y) if (num_bnd == -1): num_bnd = int(nx_fft / win_s) win_x = int(win_s) else: win_x = int(nx_fft / num_bnd) win_x = int(smallprime(win_x)) win_y = win_x x_gaussian_hi = 1. / win_x del img from filter import filt_gaussh from utilities import drop_image, rot_image # The input img is rotated such that tilt axis is vertical img2 = rot_image(img1, theta, 0, 0, 1.0, 1.0) e_fil = filt_gaussh(img2, x_gaussian_hi) del img1 del img2 x39 = 100 / (100 - overlp_y) # normalization of % of the overlap in y x29 = int(x39 * ((ny) / win_y - 1) + 1) # number of pieces vertical dim.(Y) pw2 = EMData() pw2_band = [] for ix in xrange(1, num_bnd + 1): x22 = (win_x) * (ix - 1 ) # x-direction it should start from 0 if edge_x =0 iz = 0 for iy in xrange(1, x29 + 1): x21 = (win_y / x39) * ( iy - 1) # y-direction it should start from 0 if edge_y=0 wi = window2d(e_fil, win_x, win_y, "l", x22, x21) iz = iz + 1 if (iz == 1): pw2 = periodogram(ramp(wi)) else: pw2 += periodogram(ramp(wi)) pw2 /= float(iz) # drop_image(pw2,"band%03d"%(ix)) pw2_band.append(pw2) return pw2_band
def welch_pw2_tilt_band(img,theta,num_bnd=-1,overlp_y=50,edge_x=0,edge_y=0,win_s=256): """ 1. Calculate the power spectra of tilt bands 2. The tilt micrograph is rotated such that the tilt axis is vertical (along Y axis) 3. edge_x and edge_y are removed from the micrograph """ from EMAN2 import periodogram nx = img.get_xsize() ny = img.get_ysize() num1 = int(nx-2*edge_x) num2 = int(ny-2*edge_y) nx_fft = smallprime(num1) ny_fft = smallprime(num2) img1 = window2d(img,nx_fft,ny_fft,"l",edge_x,edge_y) if(num_bnd == -1): num_bnd = int(nx_fft/win_s) win_x = int(win_s) else: win_x = int(nx_fft/num_bnd) win_x = int(smallprime(win_x)) win_y = win_x x_gaussian_hi = 1./win_x del img from filter import filt_gaussh from utilities import drop_image, rot_image # The input img is rotated such that tilt axis is vertical img2 = rot_image(img1,theta, 0, 0, 1.0,1.0) e_fil = filt_gaussh(img2, x_gaussian_hi) del img1 del img2 x39 = 100/(100-overlp_y) # normalization of % of the overlap in y x29 = int(x39*((ny)/win_y-1)+1) # number of pieces vertical dim.(Y) pw2 = EMData() pw2_band = [] for ix in xrange(1, num_bnd+1): x22 = (win_x)*(ix-1)# x-direction it should start from 0 if edge_x =0 iz=0 for iy in xrange(1, x29+1): x21 = (win_y/x39)*(iy-1) # y-direction it should start from 0 if edge_y=0 wi = window2d(e_fil,win_x, win_y,"l",x22, x21) ra = ramp(wi) iz = iz+1 if (iz == 1): pw2 = periodogram(ra) else: pw2 += periodogram(ra) pw2/=float(iz) # drop_image(pw2,"band%03d"%(ix)) pw2_band.append(pw2) return pw2_band
def main(): def params_3D_2D_NEW(phi, theta, psi, s2x, s2y, mirror): # the final ali2d parameters already combine shifts operation first and rotation operation second for parameters converted from 3D if mirror: m = 1 alpha, sx, sy, scalen = compose_transform2(0, s2x, s2y, 1.0, 540.0-psi, 0, 0, 1.0) else: m = 0 alpha, sx, sy, scalen = compose_transform2(0, s2x, s2y, 1.0, 360.0-psi, 0, 0, 1.0) return alpha, sx, sy, m progname = os.path.basename(sys.argv[0]) usage = progname + " prj_stack --ave2D= --var2D= --ave3D= --var3D= --img_per_grp= --fl= --aa= --sym=symmetry --CTF" parser = OptionParser(usage, version=SPARXVERSION) parser.add_option("--output_dir", type="string" , default="./", help="Output directory") parser.add_option("--ave2D", type="string" , default=False, help="Write to the disk a stack of 2D averages") parser.add_option("--var2D", type="string" , default=False, help="Write to the disk a stack of 2D variances") parser.add_option("--ave3D", type="string" , default=False, help="Write to the disk reconstructed 3D average") parser.add_option("--var3D", type="string" , default=False, help="Compute 3D variability (time consuming!)") parser.add_option("--img_per_grp", type="int" , default=100, help="Number of neighbouring projections.(Default is 100)") parser.add_option("--no_norm", action="store_true", default=False, help="Do not use normalization.(Default is to apply normalization)") #parser.add_option("--radius", type="int" , default=-1 , help="radius for 3D variability" ) parser.add_option("--npad", type="int" , default=2 , help="Number of time to pad the original images.(Default is 2 times padding)") parser.add_option("--sym" , type="string" , default="c1", help="Symmetry. (Default is no symmetry)") parser.add_option("--fl", type="float" , default=0.0, help="Low pass filter cutoff in absolute frequency (0.0 - 0.5) and is applied to decimated images. (Default - no filtration)") parser.add_option("--aa", type="float" , default=0.02 , help="Fall off of the filter. Use default value if user has no clue about falloff (Default value is 0.02)") parser.add_option("--CTF", action="store_true", default=False, help="Use CFT correction.(Default is no CTF correction)") #parser.add_option("--MPI" , action="store_true", default=False, help="use MPI version") #parser.add_option("--radiuspca", type="int" , default=-1 , help="radius for PCA" ) #parser.add_option("--iter", type="int" , default=40 , help="maximum number of iterations (stop criterion of reconstruction process)" ) #parser.add_option("--abs", type="float" , default=0.0 , help="minimum average absolute change of voxels' values (stop criterion of reconstruction process)" ) #parser.add_option("--squ", type="float" , default=0.0 , help="minimum average squared change of voxels' values (stop criterion of reconstruction process)" ) parser.add_option("--VAR" , action="store_true", default=False, help="Stack of input consists of 2D variances (Default False)") parser.add_option("--decimate", type ="float", default=0.25, help="Image decimate rate, a number less than 1. (Default is 0.25)") parser.add_option("--window", type ="int", default=0, help="Target image size relative to original image size. (Default value is zero.)") #parser.add_option("--SND", action="store_true", default=False, help="compute squared normalized differences (Default False)") #parser.add_option("--nvec", type="int" , default=0 , help="Number of eigenvectors, (Default = 0 meaning no PCA calculated)") parser.add_option("--symmetrize", action="store_true", default=False, help="Prepare input stack for handling symmetry (Default False)") parser.add_option("--overhead", type ="float", default=0.5, help="python overhead per CPU.") (options,args) = parser.parse_args() ##### from mpi import mpi_init, mpi_comm_rank, mpi_comm_size, mpi_recv, MPI_COMM_WORLD from mpi import mpi_barrier, mpi_reduce, mpi_bcast, mpi_send, MPI_FLOAT, MPI_SUM, MPI_INT, MPI_MAX #from mpi import * from applications import MPI_start_end from reconstruction import recons3d_em, recons3d_em_MPI from reconstruction import recons3d_4nn_MPI, recons3d_4nn_ctf_MPI from utilities import print_begin_msg, print_end_msg, print_msg from utilities import read_text_row, get_image, get_im, wrap_mpi_send, wrap_mpi_recv from utilities import bcast_EMData_to_all, bcast_number_to_all from utilities import get_symt # This is code for handling symmetries by the above program. To be incorporated. PAP 01/27/2015 from EMAN2db import db_open_dict # Set up global variables related to bdb cache if global_def.CACHE_DISABLE: from utilities import disable_bdb_cache disable_bdb_cache() # Set up global variables related to ERROR function global_def.BATCH = True # detect if program is running under MPI RUNNING_UNDER_MPI = "OMPI_COMM_WORLD_SIZE" in os.environ if RUNNING_UNDER_MPI: global_def.MPI = True if options.output_dir =="./": current_output_dir = os.path.abspath(options.output_dir) else: current_output_dir = options.output_dir if options.symmetrize : if RUNNING_UNDER_MPI: try: sys.argv = mpi_init(len(sys.argv), sys.argv) try: number_of_proc = mpi_comm_size(MPI_COMM_WORLD) if( number_of_proc > 1 ): ERROR("Cannot use more than one CPU for symmetry preparation","sx3dvariability",1) except: pass except: pass if not os.path.exists(current_output_dir): os.mkdir(current_output_dir) # Input #instack = "Clean_NORM_CTF_start_wparams.hdf" #instack = "bdb:data" from logger import Logger,BaseLogger_Files if os.path.exists(os.path.join(current_output_dir, "log.txt")): os.remove(os.path.join(current_output_dir, "log.txt")) log_main=Logger(BaseLogger_Files()) log_main.prefix = os.path.join(current_output_dir, "./") instack = args[0] sym = options.sym.lower() if( sym == "c1" ): ERROR("There is no need to symmetrize stack for C1 symmetry","sx3dvariability",1) line ="" for a in sys.argv: line +=" "+a log_main.add(line) if(instack[:4] !="bdb:"): #if output_dir =="./": stack = "bdb:data" stack = "bdb:"+current_output_dir+"/data" delete_bdb(stack) junk = cmdexecute("sxcpy.py "+instack+" "+stack) else: stack = instack qt = EMUtil.get_all_attributes(stack,'xform.projection') na = len(qt) ts = get_symt(sym) ks = len(ts) angsa = [None]*na for k in range(ks): #Qfile = "Q%1d"%k #if options.output_dir!="./": Qfile = os.path.join(options.output_dir,"Q%1d"%k) Qfile = os.path.join(current_output_dir, "Q%1d"%k) #delete_bdb("bdb:Q%1d"%k) delete_bdb("bdb:"+Qfile) #junk = cmdexecute("e2bdb.py "+stack+" --makevstack=bdb:Q%1d"%k) junk = cmdexecute("e2bdb.py "+stack+" --makevstack=bdb:"+Qfile) #DB = db_open_dict("bdb:Q%1d"%k) DB = db_open_dict("bdb:"+Qfile) for i in range(na): ut = qt[i]*ts[k] DB.set_attr(i, "xform.projection", ut) #bt = ut.get_params("spider") #angsa[i] = [round(bt["phi"],3)%360.0, round(bt["theta"],3)%360.0, bt["psi"], -bt["tx"], -bt["ty"]] #write_text_row(angsa, 'ptsma%1d.txt'%k) #junk = cmdexecute("e2bdb.py "+stack+" --makevstack=bdb:Q%1d"%k) #junk = cmdexecute("sxheader.py bdb:Q%1d --params=xform.projection --import=ptsma%1d.txt"%(k,k)) DB.close() #if options.output_dir =="./": delete_bdb("bdb:sdata") delete_bdb("bdb:" + current_output_dir + "/"+"sdata") #junk = cmdexecute("e2bdb.py . --makevstack=bdb:sdata --filt=Q") sdata = "bdb:"+current_output_dir+"/"+"sdata" print(sdata) junk = cmdexecute("e2bdb.py " + current_output_dir +" --makevstack="+sdata +" --filt=Q") #junk = cmdexecute("ls EMAN2DB/sdata*") #a = get_im("bdb:sdata") a = get_im(sdata) a.set_attr("variabilitysymmetry",sym) #a.write_image("bdb:sdata") a.write_image(sdata) else: from fundamentals import window2d sys.argv = mpi_init(len(sys.argv), sys.argv) myid = mpi_comm_rank(MPI_COMM_WORLD) number_of_proc = mpi_comm_size(MPI_COMM_WORLD) main_node = 0 shared_comm = mpi_comm_split_type(MPI_COMM_WORLD, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL) myid_on_node = mpi_comm_rank(shared_comm) no_of_processes_per_group = mpi_comm_size(shared_comm) masters_from_groups_vs_everything_else_comm = mpi_comm_split(MPI_COMM_WORLD, main_node == myid_on_node, myid_on_node) color, no_of_groups, balanced_processor_load_on_nodes = get_colors_and_subsets(main_node, MPI_COMM_WORLD, myid, \ shared_comm, myid_on_node, masters_from_groups_vs_everything_else_comm) overhead_loading = options.overhead*number_of_proc #memory_per_node = options.memory_per_node #if memory_per_node == -1.: memory_per_node = 2.*no_of_processes_per_group keepgoing = 1 current_window = options.window current_decimate = options.decimate if len(args) == 1: stack = args[0] else: print(( "usage: " + usage)) print(( "Please run '" + progname + " -h' for detailed options")) return 1 t0 = time() # obsolete flags options.MPI = True #options.nvec = 0 options.radiuspca = -1 options.iter = 40 options.abs = 0.0 options.squ = 0.0 if options.fl > 0.0 and options.aa == 0.0: ERROR("Fall off has to be given for the low-pass filter", "sx3dvariability", 1, myid) #if options.VAR and options.SND: # ERROR("Only one of var and SND can be set!", "sx3dvariability", myid) if options.VAR and (options.ave2D or options.ave3D or options.var2D): ERROR("When VAR is set, the program cannot output ave2D, ave3D or var2D", "sx3dvariability", 1, myid) #if options.SND and (options.ave2D or options.ave3D): # ERROR("When SND is set, the program cannot output ave2D or ave3D", "sx3dvariability", 1, myid) #if options.nvec > 0 : # ERROR("PCA option not implemented", "sx3dvariability", 1, myid) #if options.nvec > 0 and options.ave3D == None: # ERROR("When doing PCA analysis, one must set ave3D", "sx3dvariability", 1, myid) if current_decimate>1.0 or current_decimate<0.0: ERROR("Decimate rate should be a value between 0.0 and 1.0", "sx3dvariability", 1, myid) if current_window < 0.0: ERROR("Target window size should be always larger than zero", "sx3dvariability", 1, myid) if myid == main_node: img = get_image(stack, 0) nx = img.get_xsize() ny = img.get_ysize() if(min(nx, ny) < current_window): keepgoing = 0 keepgoing = bcast_number_to_all(keepgoing, main_node, MPI_COMM_WORLD) if keepgoing == 0: ERROR("The target window size cannot be larger than the size of decimated image", "sx3dvariability", 1, myid) import string options.sym = options.sym.lower() # if global_def.CACHE_DISABLE: # from utilities import disable_bdb_cache # disable_bdb_cache() # global_def.BATCH = True if myid == main_node: if not os.path.exists(current_output_dir): os.mkdir(current_output_dir)# Never delete output_dir in the program! img_per_grp = options.img_per_grp #nvec = options.nvec radiuspca = options.radiuspca from logger import Logger,BaseLogger_Files #if os.path.exists(os.path.join(options.output_dir, "log.txt")): os.remove(os.path.join(options.output_dir, "log.txt")) log_main=Logger(BaseLogger_Files()) log_main.prefix = os.path.join(current_output_dir, "./") if myid == main_node: line = "" for a in sys.argv: line +=" "+a log_main.add(line) log_main.add("-------->>>Settings given by all options<<<-------") log_main.add("Symmetry : %s"%options.sym) log_main.add("Input stack : %s"%stack) log_main.add("Output_dir : %s"%current_output_dir) if options.ave3D: log_main.add("Ave3d : %s"%options.ave3D) if options.var3D: log_main.add("Var3d : %s"%options.var3D) if options.ave2D: log_main.add("Ave2D : %s"%options.ave2D) if options.var2D: log_main.add("Var2D : %s"%options.var2D) if options.VAR: log_main.add("VAR : True") else: log_main.add("VAR : False") if options.CTF: log_main.add("CTF correction : True ") else: log_main.add("CTF correction : False ") log_main.add("Image per group : %5d"%options.img_per_grp) log_main.add("Image decimate rate : %4.3f"%current_decimate) log_main.add("Low pass filter : %4.3f"%options.fl) current_fl = options.fl if current_fl == 0.0: current_fl = 0.5 log_main.add("Current low pass filter is equivalent to cutoff frequency %4.3f for original image size"%round((current_fl*current_decimate),3)) log_main.add("Window size : %5d "%current_window) log_main.add("sx3dvariability begins") symbaselen = 0 if myid == main_node: nima = EMUtil.get_image_count(stack) img = get_image(stack) nx = img.get_xsize() ny = img.get_ysize() nnxo = nx nnyo = ny if options.sym != "c1" : imgdata = get_im(stack) try: i = imgdata.get_attr("variabilitysymmetry").lower() if(i != options.sym): ERROR("The symmetry provided does not agree with the symmetry of the input stack", "sx3dvariability", 1, myid) except: ERROR("Input stack is not prepared for symmetry, please follow instructions", "sx3dvariability", 1, myid) from utilities import get_symt i = len(get_symt(options.sym)) if((nima/i)*i != nima): ERROR("The length of the input stack is incorrect for symmetry processing", "sx3dvariability", 1, myid) symbaselen = nima/i else: symbaselen = nima else: nima = 0 nx = 0 ny = 0 nnxo = 0 nnyo = 0 nima = bcast_number_to_all(nima) nx = bcast_number_to_all(nx) ny = bcast_number_to_all(ny) nnxo = bcast_number_to_all(nnxo) nnyo = bcast_number_to_all(nnyo) if current_window > max(nx, ny): ERROR("Window size is larger than the original image size", "sx3dvariability", 1) if current_decimate == 1.: if current_window !=0: nx = current_window ny = current_window else: if current_window == 0: nx = int(nx*current_decimate+0.5) ny = int(ny*current_decimate+0.5) else: nx = int(current_window*current_decimate+0.5) ny = nx symbaselen = bcast_number_to_all(symbaselen) # check FFT prime number from fundamentals import smallprime is_fft_friendly = (nx == smallprime(nx)) if not is_fft_friendly: if myid == main_node: log_main.add("The target image size is not a product of small prime numbers") log_main.add("Program adjusts the input settings!") ### two cases if current_decimate == 1.: nx = smallprime(nx) ny = nx current_window = nx # update if myid == main_node: log_main.add("The window size is updated to %d."%current_window) else: if current_window == 0: nx = smallprime(int(nx*current_decimate+0.5)) current_decimate = float(nx)/nnxo ny = nx if (myid == main_node): log_main.add("The decimate rate is updated to %f."%current_decimate) else: nx = smallprime(int(current_window*current_decimate+0.5)) ny = nx current_window = int(nx/current_decimate+0.5) if (myid == main_node): log_main.add("The window size is updated to %d."%current_window) if myid == main_node: log_main.add("The target image size is %d"%nx) if radiuspca == -1: radiuspca = nx/2-2 if myid == main_node: log_main.add("%-70s: %d\n"%("Number of projection", nima)) img_begin, img_end = MPI_start_end(nima, number_of_proc, myid) """ if options.SND: from projection import prep_vol, prgs from statistics import im_diff from utilities import get_im, model_circle, get_params_proj, set_params_proj from utilities import get_ctf, generate_ctf from filter import filt_ctf imgdata = EMData.read_images(stack, range(img_begin, img_end)) if options.CTF: vol = recons3d_4nn_ctf_MPI(myid, imgdata, 1.0, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1) else: vol = recons3d_4nn_MPI(myid, imgdata, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1) bcast_EMData_to_all(vol, myid) volft, kb = prep_vol(vol) mask = model_circle(nx/2-2, nx, ny) varList = [] for i in xrange(img_begin, img_end): phi, theta, psi, s2x, s2y = get_params_proj(imgdata[i-img_begin]) ref_prj = prgs(volft, kb, [phi, theta, psi, -s2x, -s2y]) if options.CTF: ctf_params = get_ctf(imgdata[i-img_begin]) ref_prj = filt_ctf(ref_prj, generate_ctf(ctf_params)) diff, A, B = im_diff(ref_prj, imgdata[i-img_begin], mask) diff2 = diff*diff set_params_proj(diff2, [phi, theta, psi, s2x, s2y]) varList.append(diff2) mpi_barrier(MPI_COMM_WORLD) """ if options.VAR: # 2D variance images have no shifts #varList = EMData.read_images(stack, range(img_begin, img_end)) from EMAN2 import Region for index_of_particle in range(img_begin,img_end): image = get_im(stack, index_of_proj) if current_window > 0: varList.append(fdecimate(window2d(image,current_window,current_window), nx,ny)) else: varList.append(fdecimate(image, nx,ny)) else: from utilities import bcast_number_to_all, bcast_list_to_all, send_EMData, recv_EMData from utilities import set_params_proj, get_params_proj, params_3D_2D, get_params2D, set_params2D, compose_transform2 from utilities import model_blank, nearest_proj, model_circle, write_text_row, wrap_mpi_gatherv from applications import pca from statistics import avgvar, avgvar_ctf, ccc from filter import filt_tanl from morphology import threshold, square_root from projection import project, prep_vol, prgs from sets import Set from utilities import wrap_mpi_recv, wrap_mpi_bcast, wrap_mpi_send import numpy as np if myid == main_node: t1 = time() proj_angles = [] aveList = [] tab = EMUtil.get_all_attributes(stack, 'xform.projection') for i in range(nima): t = tab[i].get_params('spider') phi = t['phi'] theta = t['theta'] psi = t['psi'] x = theta if x > 90.0: x = 180.0 - x x = x*10000+psi proj_angles.append([x, t['phi'], t['theta'], t['psi'], i]) t2 = time() log_main.add( "%-70s: %d\n"%("Number of neighboring projections", img_per_grp)) log_main.add("...... Finding neighboring projections\n") log_main.add( "Number of images per group: %d"%img_per_grp) log_main.add( "Now grouping projections") proj_angles.sort() proj_angles_list = np.full((nima, 4), 0.0, dtype=np.float32) for i in range(nima): proj_angles_list[i][0] = proj_angles[i][1] proj_angles_list[i][1] = proj_angles[i][2] proj_angles_list[i][2] = proj_angles[i][3] proj_angles_list[i][3] = proj_angles[i][4] else: proj_angles_list = 0 proj_angles_list = wrap_mpi_bcast(proj_angles_list, main_node, MPI_COMM_WORLD) proj_angles = [] for i in range(nima): proj_angles.append([proj_angles_list[i][0], proj_angles_list[i][1], proj_angles_list[i][2], int(proj_angles_list[i][3])]) del proj_angles_list proj_list, mirror_list = nearest_proj(proj_angles, img_per_grp, range(img_begin, img_end)) all_proj = Set() for im in proj_list: for jm in im: all_proj.add(proj_angles[jm][3]) all_proj = list(all_proj) index = {} for i in range(len(all_proj)): index[all_proj[i]] = i mpi_barrier(MPI_COMM_WORLD) if myid == main_node: log_main.add("%-70s: %.2f\n"%("Finding neighboring projections lasted [s]", time()-t2)) log_main.add("%-70s: %d\n"%("Number of groups processed on the main node", len(proj_list))) log_main.add("Grouping projections took: %12.1f [m]"%((time()-t2)/60.)) log_main.add("Number of groups on main node: ", len(proj_list)) mpi_barrier(MPI_COMM_WORLD) if myid == main_node: log_main.add("...... Calculating the stack of 2D variances \n") # Memory estimation. There are two memory consumption peaks # peak 1. Compute ave, var; # peak 2. Var volume reconstruction; # proj_params = [0.0]*(nima*5) aveList = [] varList = [] #if nvec > 0: eigList = [[] for i in range(nvec)] dnumber = len(all_proj)# all neighborhood set for assigned to myid pnumber = len(proj_list)*2. + img_per_grp # aveList and varList tnumber = dnumber+pnumber vol_size2 = nx**3*4.*8/1.e9 vol_size1 = 2.*nnxo**3*4.*8/1.e9 proj_size = nnxo*nnyo*len(proj_list)*4.*2./1.e9 # both aveList and varList orig_data_size = nnxo*nnyo*4.*tnumber/1.e9 reduced_data_size = nx*nx*4.*tnumber/1.e9 full_data = np.full((number_of_proc, 2), -1., dtype=np.float16) full_data[myid] = orig_data_size, reduced_data_size if myid != main_node: wrap_mpi_send(full_data, main_node, MPI_COMM_WORLD) if myid == main_node: for iproc in range(number_of_proc): if iproc != main_node: dummy = wrap_mpi_recv(iproc, MPI_COMM_WORLD) full_data[np.where(dummy>-1)] = dummy[np.where(dummy>-1)] del dummy mpi_barrier(MPI_COMM_WORLD) full_data = wrap_mpi_bcast(full_data, main_node, MPI_COMM_WORLD) # find the CPU with heaviest load minindx = np.argsort(full_data, 0) heavy_load_myid = minindx[-1][1] total_mem = sum(full_data) if myid == main_node: if current_window == 0: log_main.add("Nx: current image size = %d. Decimated by %f from %d"%(nx, current_decimate, nnxo)) else: log_main.add("Nx: current image size = %d. Windowed to %d, and decimated by %f from %d"%(nx, current_window, current_decimate, nnxo)) log_main.add("Nproj: number of particle images.") log_main.add("Navg: number of 2D average images.") log_main.add("Nvar: number of 2D variance images.") log_main.add("Img_per_grp: user defined image per group for averaging = %d"%img_per_grp) log_main.add("Overhead: total python overhead memory consumption = %f"%overhead_loading) log_main.add("Total memory) = 4.0*nx^2*(nproj + navg +nvar+ img_per_grp)/1.0e9 + overhead: %12.3f [GB]"%\ (total_mem[1] + overhead_loading)) del full_data mpi_barrier(MPI_COMM_WORLD) if myid == heavy_load_myid: log_main.add("Begin reading and preprocessing images on processor. Wait... ") ttt = time() #imgdata = EMData.read_images(stack, all_proj) imgdata = [ None for im in range(len(all_proj))] for index_of_proj in range(len(all_proj)): #image = get_im(stack, all_proj[index_of_proj]) if( current_window > 0): imgdata[index_of_proj] = fdecimate(window2d(get_im(stack, all_proj[index_of_proj]),current_window,current_window), nx, ny) else: imgdata[index_of_proj] = fdecimate(get_im(stack, all_proj[index_of_proj]), nx, ny) if (current_decimate> 0.0 and options.CTF): ctf = imgdata[index_of_proj].get_attr("ctf") ctf.apix = ctf.apix/current_decimate imgdata[index_of_proj].set_attr("ctf", ctf) if myid == heavy_load_myid and index_of_proj%100 == 0: log_main.add(" ...... %6.2f%% "%(index_of_proj/float(len(all_proj))*100.)) mpi_barrier(MPI_COMM_WORLD) if myid == heavy_load_myid: log_main.add("All_proj preprocessing cost %7.2f m"%((time()-ttt)/60.)) log_main.add("Wait untill reading on all CPUs done...") ''' imgdata2 = EMData.read_images(stack, range(img_begin, img_end)) if options.fl > 0.0: for k in xrange(len(imgdata2)): imgdata2[k] = filt_tanl(imgdata2[k], options.fl, options.aa) if options.CTF: vol = recons3d_4nn_ctf_MPI(myid, imgdata2, 1.0, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1) else: vol = recons3d_4nn_MPI(myid, imgdata2, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1) if myid == main_node: vol.write_image("vol_ctf.hdf") print_msg("Writing to the disk volume reconstructed from averages as : %s\n"%("vol_ctf.hdf")) del vol, imgdata2 mpi_barrier(MPI_COMM_WORLD) ''' from applications import prepare_2d_forPCA from utilities import model_blank from EMAN2 import Transform if not options.no_norm: mask = model_circle(nx/2-2, nx, nx) if options.CTF: from utilities import pad from filter import filt_ctf from filter import filt_tanl if myid == heavy_load_myid: log_main.add("Start computing 2D aveList and varList. Wait...") ttt = time() inner=nx//2-4 outer=inner+2 xform_proj_for_2D = [ None for i in range(len(proj_list))] for i in range(len(proj_list)): ki = proj_angles[proj_list[i][0]][3] if ki >= symbaselen: continue mi = index[ki] dpar = Util.get_transform_params(imgdata[mi], "xform.projection", "spider") phiM, thetaM, psiM, s2xM, s2yM = dpar["phi"],dpar["theta"],dpar["psi"],-dpar["tx"]*current_decimate,-dpar["ty"]*current_decimate grp_imgdata = [] for j in range(img_per_grp): mj = index[proj_angles[proj_list[i][j]][3]] cpar = Util.get_transform_params(imgdata[mj], "xform.projection", "spider") alpha, sx, sy, mirror = params_3D_2D_NEW(cpar["phi"], cpar["theta"],cpar["psi"], -cpar["tx"]*current_decimate, -cpar["ty"]*current_decimate, mirror_list[i][j]) if thetaM <= 90: if mirror == 0: alpha, sx, sy, scale = compose_transform2(alpha, sx, sy, 1.0, phiM - cpar["phi"], 0.0, 0.0, 1.0) else: alpha, sx, sy, scale = compose_transform2(alpha, sx, sy, 1.0, 180-(phiM - cpar["phi"]), 0.0, 0.0, 1.0) else: if mirror == 0: alpha, sx, sy, scale = compose_transform2(alpha, sx, sy, 1.0, -(phiM- cpar["phi"]), 0.0, 0.0, 1.0) else: alpha, sx, sy, scale = compose_transform2(alpha, sx, sy, 1.0, -(180-(phiM - cpar["phi"])), 0.0, 0.0, 1.0) imgdata[mj].set_attr("xform.align2d", Transform({"type":"2D","alpha":alpha,"tx":sx,"ty":sy,"mirror":mirror,"scale":1.0})) grp_imgdata.append(imgdata[mj]) if not options.no_norm: for k in range(img_per_grp): ave, std, minn, maxx = Util.infomask(grp_imgdata[k], mask, False) grp_imgdata[k] -= ave grp_imgdata[k] /= std if options.fl > 0.0: for k in range(img_per_grp): grp_imgdata[k] = filt_tanl(grp_imgdata[k], options.fl, options.aa) # Because of background issues, only linear option works. if options.CTF: ave, var = aves_wiener(grp_imgdata, SNR = 1.0e5, interpolation_method = "linear") else: ave, var = ave_var(grp_imgdata) # Switch to std dev # threshold is not really needed,it is just in case due to numerical accuracy something turns out negative. var = square_root(threshold(var)) set_params_proj(ave, [phiM, thetaM, 0.0, 0.0, 0.0]) set_params_proj(var, [phiM, thetaM, 0.0, 0.0, 0.0]) aveList.append(ave) varList.append(var) xform_proj_for_2D[i] = [phiM, thetaM, 0.0, 0.0, 0.0] ''' if nvec > 0: eig = pca(input_stacks=grp_imgdata, subavg="", mask_radius=radiuspca, nvec=nvec, incore=True, shuffle=False, genbuf=True) for k in range(nvec): set_params_proj(eig[k], [phiM, thetaM, 0.0, 0.0, 0.0]) eigList[k].append(eig[k]) """ if myid == 0 and i == 0: for k in xrange(nvec): eig[k].write_image("eig.hdf", k) """ ''' if (myid == heavy_load_myid) and (i%100 == 0): log_main.add(" ......%6.2f%% "%(i/float(len(proj_list))*100.)) del imgdata, grp_imgdata, cpar, dpar, all_proj, proj_angles, index if not options.no_norm: del mask if myid == main_node: del tab # At this point, all averages and variances are computed mpi_barrier(MPI_COMM_WORLD) if (myid == heavy_load_myid): log_main.add("Computing aveList and varList took %12.1f [m]"%((time()-ttt)/60.)) xform_proj_for_2D = wrap_mpi_gatherv(xform_proj_for_2D, main_node, MPI_COMM_WORLD) if (myid == main_node): write_text_row(xform_proj_for_2D, os.path.join(current_output_dir, "params.txt")) del xform_proj_for_2D mpi_barrier(MPI_COMM_WORLD) if options.ave2D: from fundamentals import fpol from applications import header if myid == main_node: log_main.add("Compute ave2D ... ") km = 0 for i in range(number_of_proc): if i == main_node : for im in range(len(aveList)): aveList[im].write_image(os.path.join(current_output_dir, options.ave2D), km) km += 1 else: nl = mpi_recv(1, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) nl = int(nl[0]) for im in range(nl): ave = recv_EMData(i, im+i+70000) """ nm = mpi_recv(1, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) nm = int(nm[0]) members = mpi_recv(nm, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) ave.set_attr('members', map(int, members)) members = mpi_recv(nm, MPI_FLOAT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) ave.set_attr('pix_err', map(float, members)) members = mpi_recv(3, MPI_FLOAT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) ave.set_attr('refprojdir', map(float, members)) """ tmpvol=fpol(ave, nx, nx,1) tmpvol.write_image(os.path.join(current_output_dir, options.ave2D), km) km += 1 else: mpi_send(len(aveList), 1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) for im in range(len(aveList)): send_EMData(aveList[im], main_node,im+myid+70000) """ members = aveList[im].get_attr('members') mpi_send(len(members), 1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) mpi_send(members, len(members), MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) members = aveList[im].get_attr('pix_err') mpi_send(members, len(members), MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) try: members = aveList[im].get_attr('refprojdir') mpi_send(members, 3, MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) except: mpi_send([-999.0,-999.0,-999.0], 3, MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) """ if myid == main_node: header(os.path.join(current_output_dir, options.ave2D), params='xform.projection', fimport = os.path.join(current_output_dir, "params.txt")) mpi_barrier(MPI_COMM_WORLD) if options.ave3D: from fundamentals import fpol t5 = time() if myid == main_node: log_main.add("Reconstruct ave3D ... ") ave3D = recons3d_4nn_MPI(myid, aveList, symmetry=options.sym, npad=options.npad) bcast_EMData_to_all(ave3D, myid) if myid == main_node: if current_decimate != 1.0: ave3D = resample(ave3D, 1./current_decimate) ave3D = fpol(ave3D, nnxo, nnxo, nnxo) # always to the orignal image size set_pixel_size(ave3D, 1.0) ave3D.write_image(os.path.join(current_output_dir, options.ave3D)) log_main.add("Ave3D reconstruction took %12.1f [m]"%((time()-t5)/60.0)) log_main.add("%-70s: %s\n"%("The reconstructed ave3D is saved as ", options.ave3D)) mpi_barrier(MPI_COMM_WORLD) del ave, var, proj_list, stack, alpha, sx, sy, mirror, aveList ''' if nvec > 0: for k in range(nvec): if myid == main_node:log_main.add("Reconstruction eigenvolumes", k) cont = True ITER = 0 mask2d = model_circle(radiuspca, nx, nx) while cont: #print "On node %d, iteration %d"%(myid, ITER) eig3D = recons3d_4nn_MPI(myid, eigList[k], symmetry=options.sym, npad=options.npad) bcast_EMData_to_all(eig3D, myid, main_node) if options.fl > 0.0: eig3D = filt_tanl(eig3D, options.fl, options.aa) if myid == main_node: eig3D.write_image(os.path.join(options.outpout_dir, "eig3d_%03d.hdf"%(k, ITER))) Util.mul_img( eig3D, model_circle(radiuspca, nx, nx, nx) ) eig3Df, kb = prep_vol(eig3D) del eig3D cont = False icont = 0 for l in range(len(eigList[k])): phi, theta, psi, s2x, s2y = get_params_proj(eigList[k][l]) proj = prgs(eig3Df, kb, [phi, theta, psi, s2x, s2y]) cl = ccc(proj, eigList[k][l], mask2d) if cl < 0.0: icont += 1 cont = True eigList[k][l] *= -1.0 u = int(cont) u = mpi_reduce([u], 1, MPI_INT, MPI_MAX, main_node, MPI_COMM_WORLD) icont = mpi_reduce([icont], 1, MPI_INT, MPI_SUM, main_node, MPI_COMM_WORLD) if myid == main_node: u = int(u[0]) log_main.add(" Eigenvector: ",k," number changed ",int(icont[0])) else: u = 0 u = bcast_number_to_all(u, main_node) cont = bool(u) ITER += 1 del eig3Df, kb mpi_barrier(MPI_COMM_WORLD) del eigList, mask2d ''' if options.ave3D: del ave3D if options.var2D: from fundamentals import fpol from applications import header if myid == main_node: log_main.add("Compute var2D...") km = 0 for i in range(number_of_proc): if i == main_node : for im in range(len(varList)): tmpvol=fpol(varList[im], nx, nx,1) tmpvol.write_image(os.path.join(current_output_dir, options.var2D), km) km += 1 else: nl = mpi_recv(1, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) nl = int(nl[0]) for im in range(nl): ave = recv_EMData(i, im+i+70000) tmpvol=fpol(ave, nx, nx,1) tmpvol.write_image(os.path.join(current_output_dir, options.var2D), km) km += 1 else: mpi_send(len(varList), 1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) for im in range(len(varList)): send_EMData(varList[im], main_node, im+myid+70000)# What with the attributes?? mpi_barrier(MPI_COMM_WORLD) if myid == main_node: from applications import header header(os.path.join(current_output_dir, options.var2D), params = 'xform.projection',fimport = os.path.join(current_output_dir, "params.txt")) mpi_barrier(MPI_COMM_WORLD) if options.var3D: if myid == main_node: log_main.add("Reconstruct var3D ...") t6 = time() # radiusvar = options.radius # if( radiusvar < 0 ): radiusvar = nx//2 -3 res = recons3d_4nn_MPI(myid, varList, symmetry = options.sym, npad=options.npad) #res = recons3d_em_MPI(varList, vol_stack, options.iter, radiusvar, options.abs, True, options.sym, options.squ) if myid == main_node: from fundamentals import fpol if current_decimate != 1.0: res = resample(res, 1./current_decimate) res = fpol(res, nnxo, nnxo, nnxo) set_pixel_size(res, 1.0) res.write_image(os.path.join(current_output_dir, options.var3D)) log_main.add("%-70s: %s\n"%("The reconstructed var3D is saved as ", options.var3D)) log_main.add("Var3D reconstruction took %f12.1 [m]"%((time()-t6)/60.0)) log_main.add("Total computation time %f12.1 [m]"%((time()-t0)/60.0)) log_main.add("sx3dvariability finishes") from mpi import mpi_finalize mpi_finalize() if RUNNING_UNDER_MPI: global_def.MPI = False global_def.BATCH = False