help='implement phase, set to train or test') parser.add_argument('--device_target', type=str, default="Ascend", choices=['Ascend', 'GPU'], help='device where the code will be implemented (default: Ascend)') parser.add_argument('--data_path', type=str, default="./", help='path where the dataset is saved') parser.add_argument('--ckpt_path', type=str, default="./ckpt", help='if mode is test, must provide\ path where the trained ckpt file') parser.add_argument('--dataset_sink_mode', type=bool, default=True, help='dataset_sink_mode is False or True') args = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) network = AlexNet(cfg.num_classes) loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean") repeat_size = 1 # when batch_size=32, steps is 1562 lr = Tensor(get_lr(0, cfg.learning_rate, cfg.epoch_size, 1562)) opt = nn.Momentum(network.trainable_params(), lr, cfg.momentum) model = Model(network, loss, opt, metrics={"Accuracy": Accuracy()}) # test if args.mode == 'train': print("============== Starting Training ==============") ds_train = create_dataset(args.data_path, cfg.batch_size, repeat_size, args.mode) config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_checkpoint_steps, keep_checkpoint_max=cfg.keep_checkpoint_max) ckpoint_cb = ModelCheckpoint(prefix="checkpoint_alexnet", directory=args.ckpt_path, config=config_ck) model.train(cfg.epoch_size, ds_train, callbacks=[ckpoint_cb, LossMonitor()], dataset_sink_mode=args.dataset_sink_mode) elif args.mode == 'test':
path where the trained ckpt file') parser.add_argument('--dataset_sink_mode', type=bool, default=True, help='dataset_sink_mode is False or True') args = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) network = AlexNet(cfg.num_classes) loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean") lr = Tensor( get_lr(0, cfg.learning_rate, cfg.epoch_size, cfg.save_checkpoint_steps)) opt = nn.Momentum(network.trainable_params(), lr, cfg.momentum) model = Model(network, loss, opt, metrics={"Accuracy": Accuracy()}) # test print("============== Starting Training ==============") ds_train = create_dataset(args.data_path, cfg.batch_size, cfg.epoch_size) time_cb = TimeMonitor(data_size=ds_train.get_dataset_size()) config_ck = CheckpointConfig( save_checkpoint_steps=cfg.save_checkpoint_steps, keep_checkpoint_max=cfg.keep_checkpoint_max) ckpoint_cb = ModelCheckpoint(prefix="checkpoint_alexnet", directory=args.ckpt_path, config=config_ck) model.train(cfg.epoch_size, ds_train, callbacks=[time_cb, ckpoint_cb,