Exemplo n.º 1
0
                        help='implement phase, set to train or test')
    parser.add_argument('--device_target', type=str, default="Ascend", choices=['Ascend', 'GPU'],
                        help='device where the code will be implemented (default: Ascend)')
    parser.add_argument('--data_path', type=str, default="./", help='path where the dataset is saved')
    parser.add_argument('--ckpt_path', type=str, default="./ckpt", help='if mode is test, must provide\
                        path where the trained ckpt file')
    parser.add_argument('--dataset_sink_mode', type=bool, default=True, help='dataset_sink_mode is False or True')
    args = parser.parse_args()

    context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)

    network = AlexNet(cfg.num_classes)
    loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
    repeat_size = 1
    # when batch_size=32, steps is 1562
    lr = Tensor(get_lr(0, cfg.learning_rate, cfg.epoch_size, 1562))
    opt = nn.Momentum(network.trainable_params(), lr, cfg.momentum)
    model = Model(network, loss, opt, metrics={"Accuracy": Accuracy()})  # test

    if args.mode == 'train':
        print("============== Starting Training ==============")
        ds_train = create_dataset(args.data_path,
                                  cfg.batch_size,
                                  repeat_size,
                                  args.mode)
        config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_checkpoint_steps,
                                     keep_checkpoint_max=cfg.keep_checkpoint_max)
        ckpoint_cb = ModelCheckpoint(prefix="checkpoint_alexnet",  directory=args.ckpt_path, config=config_ck)
        model.train(cfg.epoch_size, ds_train, callbacks=[ckpoint_cb, LossMonitor()],
                    dataset_sink_mode=args.dataset_sink_mode)
    elif args.mode == 'test':
Exemplo n.º 2
0
                        path where the trained ckpt file')
    parser.add_argument('--dataset_sink_mode',
                        type=bool,
                        default=True,
                        help='dataset_sink_mode is False or True')
    args = parser.parse_args()

    context.set_context(mode=context.GRAPH_MODE,
                        device_target=args.device_target)

    network = AlexNet(cfg.num_classes)
    loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False,
                                            sparse=True,
                                            reduction="mean")
    lr = Tensor(
        get_lr(0, cfg.learning_rate, cfg.epoch_size,
               cfg.save_checkpoint_steps))
    opt = nn.Momentum(network.trainable_params(), lr, cfg.momentum)
    model = Model(network, loss, opt, metrics={"Accuracy": Accuracy()})  # test

    print("============== Starting Training ==============")
    ds_train = create_dataset(args.data_path, cfg.batch_size, cfg.epoch_size)
    time_cb = TimeMonitor(data_size=ds_train.get_dataset_size())
    config_ck = CheckpointConfig(
        save_checkpoint_steps=cfg.save_checkpoint_steps,
        keep_checkpoint_max=cfg.keep_checkpoint_max)
    ckpoint_cb = ModelCheckpoint(prefix="checkpoint_alexnet",
                                 directory=args.ckpt_path,
                                 config=config_ck)
    model.train(cfg.epoch_size,
                ds_train,
                callbacks=[time_cb, ckpoint_cb,