コード例 #1
0
def _run(params, x_region, y_region, regions, index):
    """Execute one pass on all possible GPUs with slice ranges given by *regions*."""
    from gi.repository import Ufo

    pm = Ufo.PluginManager()
    graph = Ufo.TaskGraph()
    scheduler = Ufo.FixedScheduler()
    gpus = scheduler.get_resources().get_gpu_nodes()
    num_gpus = len(gpus)

    broadcast = Ufo.CopyTask()
    source = _setup_source(params, pm, graph)
    graph.connect_nodes(source, broadcast)

    for i, region in enumerate(regions):
        subindex = index * num_gpus + i
        _setup_graph(pm,
                     graph,
                     subindex,
                     x_region,
                     y_region,
                     region,
                     params,
                     broadcast,
                     gpu=gpus[i])

    scheduler.run(graph)
    duration = scheduler.props.time
    LOG.info('Execution time: {} s'.format(duration))

    return duration
コード例 #2
0
def _create_runs(params, queue):
    """Workaround function to get the number of gpus and compute regions. gi.repository must always
    be called in a separate process, otherwise the resources return None gpus.
    """
    #TODO: remove the whole function after memory leak fix!
    from gi.repository import Ufo

    scheduler = Ufo.FixedScheduler()
    gpus = scheduler.get_resources().get_gpu_nodes()
    num_gpus = len(gpus)
    x_region, y_region, regions = _split_regions(params, gpus)
    LOG.info('Using {} GPUs in {} passes'.format(min(len(regions), num_gpus), len(regions)))

    queue.put((x_region, y_region, regions, num_gpus))
コード例 #3
0
ファイル: genreco.py プロジェクト: ldorofeeva/tofu
    def start_one(index):
        gpu_index, region = regions[index]
        scheduler = Ufo.FixedScheduler()
        scheduler.set_resources(resources[index])
        graph = Ufo.TaskGraph()
        gpu = scheduler.get_resources().get_gpu_nodes()[gpu_index]
        region_index = run_number * len(resources) + index
        geometry = CTGeometry(args)
        if (len(args.center_position_z) == 1
                and np.modf(args.center_position_z[0])[0] == 0
                and geometry.is_simple_parallel_tomo):
            LOG.info(
                'Simple tomography with integer z center, changing to center_position_z + 0.5 '
                'to avoid interpolation')
            geometry.args.center_position_z = (
                geometry.args.center_position_z[0] + 0.5, )
        if not args.disable_projection_crop:
            if not args.dry_run and (args.y or args.height):
                LOG.debug(
                    '--y or --height specified, not optimizing projection region'
                )
            else:
                geometry.optimize_args(region=region)
        opt_args = geometry.args
        if args.dry_run:
            source = get_task('dummy-data',
                              number=args.number,
                              width=args.width,
                              height=args.height)
        else:
            source = None
        setup_graph(opt_args,
                    graph,
                    x_region,
                    y_region,
                    region,
                    source=source,
                    gpu=gpu,
                    index=region_index,
                    make_reader=True)
        LOG.debug('Pass: %d, device: %d, region: %s', run_number + 1,
                  gpu_index, region)
        scheduler.run(graph)

        return scheduler.props.time
コード例 #4
0
def test_core_issue_64_fixed_expansion():
    g = Ufo.TaskGraph()
    pm = Ufo.PluginManager()
    sched = Ufo.FixedScheduler()
    arch = Ufo.ArchGraph()
    gpus = arch.get_gpu_nodes()
    sched.set_gpu_nodes(arch, gpus)

    generate = pm.get_task('generate')
    null = pm.get_task('null')

    generate.set_properties(number=5, width=512, height=512)

    for gpu in gpus:
        median = pm.get_task('median-filter')
        median.set_proc_node(gpu)
        g.connect_nodes(generate, median)
        g.connect_nodes(median, null)

    sched.run(g)
コード例 #5
0
ファイル: ufo.py プロジェクト: ufo-kit/concert
    def start(self, arch=None, gpu=None):
        """
        Run the processing in a new thread.

        Use :meth:`.push` to insert data into the processing chaing and
        :meth:`~InjectProcess.wait` to wait until processing has finished."""
        def run_scheduler(sched):
            sched.run(self.graph)

        if arch and gpu:
            sched = Ufo.FixedScheduler()
            sched.set_gpu_nodes(arch, [gpu])
        else:
            sched = self.sched

        self.thread = threading.Thread(target=run_scheduler, args=(sched,), daemon=True)
        self.thread.start()

        if not self._started:
            self._started = True
コード例 #6
0
ファイル: ufo.py プロジェクト: ufo-kit/concert
    def __init__(self, args, resources=None, gpu_index=0, do_normalization=False,
                 region=None, copy_inputs=False):
        if args.width is None or args.height is None:
            raise GeneralBackprojectError('width and height must be set in GeneralBackprojectArgs')
        scheduler = Ufo.FixedScheduler()
        if resources:
            scheduler.set_resources(resources)
        gpu = scheduler.get_resources().get_gpu_nodes()[gpu_index]

        self.args = copy.deepcopy(args)
        x_region, y_region, z_region = get_reconstruction_regions(self.args, store=True,
                                                                  dtype=float)
        set_projection_filter_scale(self.args)
        if region is not None:
            self.args.region = region
        LOG.debug('Creating reconstructor for gpu %d, region: %s', gpu_index, self.args.region)
        geometry = CTGeometry(self.args)
        if not self.args.disable_projection_crop:
            geometry.optimize_args()
        self.args = geometry.args

        regions = make_runs([gpu], [gpu_index], x_region, y_region, self.args.region,
                            DTYPE_CL_SIZE[self.args.store_type],
                            slices_per_device=self.args.slices_per_device,
                            slice_memory_coeff=self.args.slice_memory_coeff,
                            data_splitting_policy=self.args.data_splitting_policy)
        if len(regions) > 1:
            raise GeneralBackprojectError('Region does not fit to the GPU memory')

        graph = Ufo.TaskGraph()

        # Normalization
        self.ffc = None
        self.do_normalization = do_normalization
        if do_normalization:
            self.ffc = get_task('flat-field-correct', processing_node=gpu)
            self.ffc.props.fix_nan_and_inf = self.args.fix_nan_and_inf
            self.ffc.props.absorption_correct = self.args.absorptivity
            self._darks_averaged = False
            self._flats_averaged = False
            self.dark_avg = get_task('average', processing_node=gpu)
            self.flat_avg = get_task('average', processing_node=gpu)
            graph.connect_nodes_full(self.dark_avg, self.ffc, 1)
            graph.connect_nodes_full(self.flat_avg, self.ffc, 2)

        (first, last) = setup_graph(self.args, graph, x_region, y_region, self.args.region,
                                    source=self.ffc, gpu=gpu, index=gpu_index, do_output=False,
                                    make_reader=False)
        output_dims = 2
        if args.slice_metric:
            output_dims = 1
            metric = self.args.slice_metric
            if args.slice_metric == 'sag':
                metric = 'sum'
                gradient_task = get_task('gradient', processing_node=gpu, direction='both_abs')
                graph.connect_nodes(last, gradient_task)
                last = gradient_task
            measure_task = get_task('measure', processing_node=gpu, axis=-1, metric=metric)
            graph.connect_nodes(last, measure_task)
        elif first == last:
            # There are no other processing steps other than back projection
            LOG.debug('Only back projection, no other processing')
            graph = first

        super().__init__(graph, get_output=True, output_dims=output_dims, scheduler=scheduler,
                         copy_inputs=copy_inputs)

        if self.do_normalization:
            # Setup input tasks for normalization images averaging. Our parent picks up only the two
            # averagers and not the ffc's zero port for projections.
            self.input_tasks[self.ffc] = [Ufo.InputTask()]
            self.ufo_buffers[self.ffc] = [None]
            self.graph.connect_nodes_full(self.input_tasks[self.ffc][0], self.ffc, 0)